Skip to main content Accessibility help
×
Home

Interactions in Carbon Nanotubes and Polymer/Nanotubes Composites as Evidenced by Raman Spectroscopy (Invited)

  • Serge Lefrant (a1), Jean-Pierre Buisson (a1), Olivier Chauvet (a1), Jean-Michel Benoit (a1), M. Baibarac (a2), I. Baltog (a2) and P. Bernier (a3)...

Abstract

Carbon nanotubes systems have revealed large potentialities in terms of applications, especially at a nanometric scale. As a consequence, the different interactions which can take place can be of primary importance. In this paper, we report studies carried out on different carbon systems such as single-walled or multi-walled nanotubes and polymer/nanotubes composites. By using Raman spectroscopy, apart from the expected interactions between tubes in bundles which have initiated experiments on individual entities, we put in evidence strong chemical reactions at the interface metal/nanotubes when Ag or Au surfaces are used to carry out Surface Enhanced Raman Scattering experiments. We show in particular that a different behavior is observed for metallic and semiconducting tubes. Also, a high state of disorder is observed, together with the transformation of nanotubes to other carbon compounds. In the case of multi-walled nanotubes, theoretical calculations allow us to interpret the low frequency Raman modes by introducing interactions in concentric tubes, in rather good agreement with experiments. Finally, in polymer/nanotubes composites, an upshift of the radial breathing mode is observed and we show in this case that it originates from the dynamical stress applied by the polymer on the bundles in response to the breathing vibration.

Copyright

References

Hide All
1.See for instance “Physical properties of carbon nanotubes”, ed. Saito, R., 2. Dresselhaus, G., Dresselhaus, M., Imperial College Press, London (1998).
2. Farhat, S., Chapelle, M. lamy de la, Loiseau, A., Scott, C.D., Lefrant, S., Journet, C. and Bernier, P., J. Chem.Phys. 115, n°14, 6752 (2001).
3. Colomer, J.F., Benoit, J.M., Stephan, C., Lefrant, S., Tendeloo, G. Van and Nagy, J.B., Chem.Phys. Lett. 345, 11 (2001).
4. Metenier, K., Bonnamy, S., Beguin, F., Journet, C., Bernier, P., Chapelle, M. Lamy de la, Chauvet, O. and Lefrant, S., Carbon, in press (2002).
5. Lefrant, S., Baltog, I., Chapelle, M. Lamy de la, Baibarac, M., Louarn, G., Journet, C., and Bernier, P., Synth. Met. 100, 13 (1999).
6. Henrard, L. et al., Phys. Rev. B 60, R8514 (1999).
7. Kahn, D. et al, Phys. Rev. B 60, 6535 (1999).
8. Marcoux, P., Schreiber, J., Batail, P., Lefrant, S., Renouard, J., Jacob, G., Albertini, D. and Mevellec, J.Y., in press in J. of Royal Soc. Chem, PCCP, (2002).
9. Rao, A.M. et al, Phys.Rev.Lett. 86, n°17, 3895 (2001).
10. Baibarac, M. et al, Proceedings of the MRS 2000 Fall Meeting, Vol. 633, A11.4.1 (2001).
11. Dravid, V.P. et al, Science 259, (1993).
12.This upshift disappears for SWNTs mass fractions larger than 4%. This is due to the formation of nanotubes aggregates into the composite films at a high SWNTs concentration, as confirmed by Scanning Electron Microscopy.
13. Buisson, J.P. et al., Proceedings of the MRS 2000 Fall Meeting, Vol. 633, A14.12.1 (2001).
14. Venkastewaran, U.D. et al., Phys. Rev. B 59, 10928 (1999).

Related content

Powered by UNSILO

Interactions in Carbon Nanotubes and Polymer/Nanotubes Composites as Evidenced by Raman Spectroscopy (Invited)

  • Serge Lefrant (a1), Jean-Pierre Buisson (a1), Olivier Chauvet (a1), Jean-Michel Benoit (a1), M. Baibarac (a2), I. Baltog (a2) and P. Bernier (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.