Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T00:03:55.981Z Has data issue: false hasContentIssue false

The Interaction of HCl With polycrystalline β-SiC: Evidence for a Site-Blocking Mechanism for HCl Inhibition of SiC CVD

Published online by Cambridge University Press:  10 February 2011

Michelle T. Schulberg
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969
Mark D. Allendorf
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969
Duane A. Outka
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969
Get access

Abstract

Chlorine-containing precursors are attractive for chemical vapor deposition (CVD) of SiC because they are less hazardous and more economical than silane precursors. The reactivity of HCl, a by-product of these reactions, on SiC is of particular interest because it has been reported that HCl inhibits SiC CVD, but the mechanism for this inhibition has not been identified. In this work the adsorption of HCl on polycrystalline β-SiC was examined with Auger Electron Spectroscopy (AES) and Temperature Programmed Desorption (TPD). HCl adsorbs readily on SiC, with an initial sticking probability of 0.1 at 300 K, and forms a strong bond, with an activation energy for desorption of 64 kcal/mol. The only product detected by TPD is HCl, which desorbs in a peak centered at 1010 K. There are no Si- or C-containing desorption products, demonstrating that HCl does not etch SiC under TPD conditions. These results are consistent with a site-blocking mechanism for HCl inhibition of SiC CVD, but not with an etching mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Allendorf, M. D. and Melius, C. F., J. Phys. Chem. 97, p. 720 (1993).Google Scholar
2. Osterheld, T. H., Allendorf, M. D. and Melius, C. F., J. Phys. Chem. 98, p. 6995 (1994).Google Scholar
3. Allendorf, M. D. and Osterheld, T. H., in: Chemical Vapor Deposition of Refractory Metals and Ceramics III, Mat. Res. Soc. Symp. Proc. Vol.363, Eds. Lee, W. Y., Gallois, B. M. and Pickering, M. A. (Materials Research Society, Pittsburgh, PA, in press).Google Scholar
4. Osterheld, T. H. and Allendorf, M. D., in: Chemical Vapor Deposition of Refractory Metals and Ceramics III, Mat. Res. Soc. Symp. Proc. Vol.363, Eds. Lee, W. Y., Gallois, B. M. and Pickering, M. A. (Materials Research Society, Pittsburgh, PA, in press).Google Scholar
5. Papasouliotis, G. D. and Sotirchos, S. V., J. Electrochem. Soc. 141, p. 1599 (1994).Google Scholar
6. Besmann, T. M., Sheldon, B. W., Moss, T. S. III, and Kaster, M. D., J. Am. Ceram. Soc. 75, p. 2899 (1992).Google Scholar
7. Murooka, K., Itoh, M., Komano, H., and Gomei, Y., Jap. J. Appl. Phys. 30, p. 3074 (1991).Google Scholar
8. Langlais, F. and Prebende, C., in: CVD XI, Proc. of the Eleventh Intl. Conf. on Chemical Vapor Deposition, Eds. Spear, Karl E. and Cullen, G. W. (The Electrochemical Society, Pennington, NJ, 1990), p. 686.Google Scholar
9. Loumagne, F., Langlais, F., and Naslain, R., Journal de Physique IV, Colloque C3, supplement to Journal de Physique II 3, p. 527 (1993).Google Scholar
10. Schulberg, M. T., Allendorf, M. D., and Outka, D. A., Surf. Sci. 341-3, p. 262 (1995).Google Scholar
11. Dayan, M., J. Vac. Sci. Technol. A 4, p. 38 (1986).Google Scholar
12. Fukuda, S., Kato, S., Mohri, M., and Yamashina, T., J. Nucl. Mater. 111-112, p. 839 (1982); B. Jørgensen and P. Morgen, J. Vac. Sci. Technol. A 4, p. 1701 (1986).Google Scholar
13. Mendicino, M. A. and Seebauer, E. G., J. Electrochem. Soc. 140, p. 1786 (1993).Google Scholar
14. Miyamura, M., Sakisaka, Y., Nishijima, M., and Onchi, M., Surf. Sci. 72, p. 243 (1978).Google Scholar
15. Allendorf, M. D. and Outka, D. A., Surf. Sci. 258, p. 177 (1991).Google Scholar
16. Yates, J. T. Jr., in Methods of Experimental Physics, Vol.22, edited by Park, R. L. and Lagally, M. G. (Academic Press, New York, 1985) p. 425.Google Scholar
17. Gupta, P., Coon, P. A., Koehler, B. G., and George, S. M., J. Chem. Phys. 93, p. 2827 (1990).Google Scholar
18. Sullivan, D. J. D., Flaum, H. C., and Kummel, A. C., J. Phys. Chem. 97, p. 12051 (1993).Google Scholar
19. D'Evelyn, M. P., Yang, Y. L., and Cohen, S. M., J. Chem. Phys. 101, p. 2463 (1994).Google Scholar