Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T07:48:50.550Z Has data issue: false hasContentIssue false

Interaction of an Aromatic Molecule with a Surface

Published online by Cambridge University Press:  25 February 2011

G. Vidali
Affiliation:
Physics Department, Syracuse University, Syracuse, N.Y.13244-1130
M. Karimi
Affiliation:
Physics Department, Utica College, Utica, N.Y. 13502
Get access

Abstract

The interaction between an aromatic molecule and the graphite basal plane is constructed using a Lennard-Jones 6–12 potential. The corrugation of the potential across the surface, the binding energies and vibrational frequencies of the aromatic molecules on the basal plane have been calculated and compared with experimental data. We have also calculated the interaction between a rare-gas atom and an aromatic molecule using two independent models, one based on the pairwise sum of the Lennard-Jones potential and the other on the Effective Medium Theory (EMT) for the repulsive part and a Van der Waals dispersion term for the attractive part. Our results are then compared with available experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See articles in Polycyclic Aromatic Hydrocarbons and Astrophysics, Eds. Leger, A., d'Hendecourt, L., and Boccara, N. (D. Riedel Publishing Co., Boston, 1987).Google Scholar
2. Jakob, P. and Menzel, D., Surf. Sci. 201, 503 (1988).CrossRefGoogle Scholar
3. Battezzati, L., Pisani, C., and Ricca, F., Trans. Faraday Soc., 71, 1629 (1975).CrossRefGoogle Scholar
4. Bondi, C. and Taddei, G., Surf. Sci. 203, 587 (1988).CrossRefGoogle Scholar
5. Vidali, G. and Karimi, M. (submitted).Google Scholar
6. Steele, W. A, The Interaction of Gases with Solid Surfaces (Pergamon, Oxford, 1974); H. Hoinkes, Rev. Mod. Phys. 52, 933 (1980).Google Scholar
7. Phillips, J. M. and Hammerbacher, M. D., Phys. Rev. B29, 5860 (1984) and references cited therein.Google Scholar
8. Norskov, J. K., Phys. Rev. B26, 2875 (1982); N. D. Lang and J. K. Norskov, Phys.Rev., B27, 4612 (1983). M. W. Cole and F. Toigo, Phys. Rev. B31, 727 (1985).CrossRefGoogle Scholar
9. Karimi, M. and Vidali, G., Phys. Rev. B38, 7759; in Diffusion at Interfaces: Microscopic Concepts, Eds. H. Kreuzer, J. J. Weimer and M. Grunze (Springer Series in Surface Science), v.12, 43 (1988).CrossRefGoogle Scholar
10. Karimi, M. and Vidali, G., Phys. Rev. B 1988 (in press); Surf. Sci. (in press).Google Scholar
11. Toigo, F. and Cole, M. W., Phys. Rev. B32, 6989 (1985).CrossRefGoogle Scholar
12. Carlos, W. E. and Cole, M. W., Phys. Rev. Lett. 43, 697 (1979); Surf. Sci. 91, 339 (1980).CrossRefGoogle Scholar
13. Atom beam scattering and thermodynamic data are summarized in: Cole, M. W., Frankl, D. R., and Goodstein, D. L., Rev. Mod. Phys. 53, 199 (1981).CrossRefGoogle Scholar
14. Cole, M. W. and Toigo, F., Phys. Rev. B31, 727 (1985).CrossRefGoogle Scholar
15. Cole, M. W., private communication.Google Scholar
16. Steele, W. A., J. Phys. Chem. 82, 817 (1978).CrossRefGoogle Scholar
17. Beck, S. M., Liverman, M. G., L.Monts, D., and J.Smalley, R., J. Chem. Phys. 70, 232 (1979).CrossRefGoogle Scholar
18. Carneiro, K., Passell, L., Thomlison, W., and Taub, H., Phys. Rev. B24, 1170 (1981).CrossRefGoogle Scholar
19. Leutwyler, S. and Jortner, J., J. Phys. Chem. 91, 5588 (1987).CrossRefGoogle Scholar
20. Girifalco, L. A. and Lad, R. A., J. Chem. Phys. 25, 693 (1956).CrossRefGoogle Scholar
21. DiVincenzo, D. P., Mele, E. J., and Holzwarth, N. A.W.. Phys. Rev. B27, 2958 (1983).Google Scholar
22. Vidali, G., Cole, M. W., and Klein, J. R., Phys. Rev. B28, 3064 (1983).CrossRefGoogle Scholar