Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-19T03:42:21.091Z Has data issue: false hasContentIssue false

Integration of VO2 Thin Films on Si(100) for Thermal Switching Devices Applications

Published online by Cambridge University Press:  31 January 2011

Alok Gupta
Affiliation:
agupta10@ncsu.edu, North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States
Ravi Aggarwal
Affiliation:
raggarw@ncsu.edu, North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States
Jagdish Narayan
Affiliation:
J_narayan@ncsu.edu, North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States
Get access

Abstract

Thin films of vanadium dioxide (VO2) exhibit an interesting semiconductor to metal transition (SMT) when heated above ˜680C in which its resistivity changes by 3-4 orders of magnitude and its transmittance for IR wavelengths drops drastically. Integration of these thin films with Si (100) substrate is of immense technological importance due to its potential applications in sensor and memory based devices. Using pulsed laser deposition (PLD) we have demonstrated in this study that thin films of VO2 can be grown epitaxially on Si (100) substrate using an intermediate tetragonal Yttrium-Stabilized Zirconia (YSZ) layer without any further annealing. X-ray diffraction (XRD) and cross-section transmission electron microscopy studies were performed on the films and they are found to be of highly epitaxial nature. Electrical resistivity measurement were carried out using the four-point probe method and SMT parameters were extracted using Gaussian fit of the data. The S-M transition parameters are in close proximity with parameters obtained from vanadium oxide films deposited on oxide based substrates such as Al2O3 or TiO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Morin, F. J. Phys. Rev. Lett. 3(1), 34 (1959).Google Scholar
2 Goodenough, J. B. J. Solid. State. Chem. 3, 490 (1971).Google Scholar
3 Liu, H. Vasquez, O. Santiago, V. R. Diaz, L. Fernandez, F. E. J. Elec. Mat. 33(10), 1171 (2004).Google Scholar
4 Biermann, S. Poteryaev, A. Lichtenstein, A. I. and Georges, A. Phys. Rev. Lett. 94, 026404 (2005).Google Scholar
5 Narayan, J. and Bhosle, V. J. Appl. Phys. 100, 103524 (2006).Google Scholar
6 Qazilbash, M. M. Brehm, M. Byung-Gyu Chae, P.-C. Ho, Andreev, G. O. Kim, Bong-Jun, Yun, Sun Jin, Balatsky, A. V. Maple, M. B. Keilmann, F. Kim, Hyun-Tak, and Basov, D. N. Science 318, 1750 (2007).Google Scholar
7 Kumar R. T., R., Karunagaran, B. Mangalaraj, D. Narayandass, S. K. Manoravi, P. Joseph, M. and Gopal, V. Sensors Actuators A 107, 62 (2003).Google Scholar
8 Roach, W. R. Appl. Phys. Lett. 19, 453 (1971).Google Scholar
9 Jorgenson, G. V. and Lee, J. C. Sol. Energy Mater. 14, 205 (1986).Google Scholar
10 Chivian, J. S. Scott, M. W. Case, W. E. and Krasutsky, N. J. IEEE J. Quantum Electron. 21, 383 (1985).Google Scholar
11 Narayan, J. and Larson, B. C. J. Appl. Phys. 93, 278 (2003).Google Scholar
12 Thompson, R. J. Appl. Phys. 52, 6763 (1981).Google Scholar
13 Tu, K.N. Ziegler, J.F. and Kircher, C.J., Appl. Phys. Lett. 23, 493 (1973).Google Scholar
14 Yuan, N. Lia, J. Lib, G. and Chenc, X. Thin Solid Films 515, 1275 (2006).Google Scholar
15 Aggarwal, R. Jin, C. Pant, P. Narayan, J. and Narayan, R. J. Appl. Phys. Lett. 93, 251905 (2008).Google Scholar
16 Brassard, D. Fourmaux, S. Jean-Jacques, M., Kieffer, J. C. and Khakani, M. A. El, Appl. Phys. Lett. 87, 051910 (2005).Google Scholar
17 Jerominek, H. Picard, F. and Vincent, D. Optical Engg. 32(9), 2092 (1993).Google Scholar
18 Wang, S. J. Ong, C. K. Xu, S. Y. Chen, P. Tjiu, W. C. Huan, A. C. H. Yoo, W. J. Lim, J. S. Feng, W. and Choi, W. K. Semicond. Sci. Technol. 16, L13 (2001).Google Scholar