Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T13:40:01.332Z Has data issue: false hasContentIssue false

Integration of Multilayers in Er-Doped Porous Silicon Structures and Advances in 1.5 μm Optoelectronic Devices

Published online by Cambridge University Press:  09 August 2011

H. A. Lopez
Affiliation:
Materials Science Program, University of Rochester, Rochester, NY 14627
S. Chan
Affiliation:
Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627
L. Tsybeskov
Affiliation:
Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627
H. Koyama
Affiliation:
Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627
V. P. Bondarenko
Affiliation:
Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
P. M. Fauchet
Affiliation:
Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627
Get access

Abstract

Infrared photoluminescence (PL) and electroluminescence (EL) from erbium-doped porous silicon (PSi) structures are studied. The PL and EL from the Er-doped PSi structures and the absence of silicon band edge recombination, point defect, and dislocation luminescence bands suggest that the Er-complex centers are the most efficient recombination sites. PSi multilayers with very high reflectivity (R ≥ 90%) in the 1.5 gim range have been incorporated in the structures resulting in a PL enhancement of over 100%. Stable and intense EL is obtained from the Er-doped structures. The EL spectrum is similar to that of the PL, but shifted towards higher energy. The unexpected shift in emission opens up the possibility for erbium related luminescence to encompass a larger part of the optimal wavelength window for fiber optic communications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ennen, H., Scheider, J., Pomrenke, G., and Axman, A., Appl. Phys. Lett. 43, 943 (1983).Google Scholar
2. Coffa, S., Priolo, F., Franzo, G., Bellani, V., Camera, A., and Spinella, C., Phys. Rev. B 48, 11782 (1993).Google Scholar
3. Michael, J., Benton, L., Ferrante, R. F., Jacobson, D. C., Eaglesham, D. J., Fitzgerald, E. A., Xie, Y.-H., Poate, J. M., and Kimerling, L. C., J. Appl. Phys. 70, 2762 (1991).Google Scholar
4. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
5. Hirschman, K. D., Tsybeskov, L., Duttagupta, S. P., and Fauchet, P. M., Nature 384, 338 (1996).Google Scholar
6. Collins, R. T., Fauchet, P. M., and Tischler, M. A., Physics Today 50, 24 (1997).Google Scholar
7. Pavesi, L., La Revista del Nuovo Cimento 20 (10), 176 (1997).Google Scholar
8. Namavar, F., Lu, F., Perry, C. H., Cremins, A., Kalkhoran, N. M., Daly, J. T., and Soref, R. A., Mat. Res. Soc. Symp. Proc. 358, 375 (1995).Google Scholar
9. Kimura, T., Yokoi, A., Horiguchi, H., Saito, R., Ikoma, T., and Sato, A., Appl. Phys. Lett. 65, 983 (1994).Google Scholar
10. Polman, A., J. Appl. Phys. 82, 1 (1997).Google Scholar
11. Tsybeskov, L., Duttagupta, S. P., Hirschman, K. D., Moore, K. L., Hal[, D. G., and Fauchet, P. M., Appl. Phys. Lett. 70, 1790 (1997).Google Scholar
12. Coffa, S., Franzo, G., and Priolo, F., MRS Bulletin 23 (4), 2532 (1998).Google Scholar