Skip to main content Accessibility help
×
Home

In-Situ Synthesis of Intermetallic Matrix Composites

  • Dilip M. Shah (a1) and Donald L. Anton (a2)

Abstract

In pursuing the development of intermetallics as high temperature structural materials, a composite approach is considered necessary for achieving room temperature toughness. If not further qualified, the term “composite” generally implies the application of mechanical processes by which a strong reinforcing phase is dispersed in the matrix, often as aligned continuous fibers. While this approach appears simple and promising in principle, in practice it is limited by the availability of compatible fibers, controlled processing, and microstructural homogeneity and reproducibility. Alternatively, the composite microstructures may be created in-situ either synthetically or naturally. In synthetically derived composites, the desired phases may be deposited layer by layer using such techniques as chemical vapor deposition (CVD), and potentially a variety of lithographic techniques may be employed to control the microstructure. However, such techniques are currently rate limited and not well developed for the large dimensions required for structural composites. In contrast, the in-situ composites, which rely on phase separation by either eutectic solidification or solid state precipitation, are economical and especially well suited for generating naturally compatible ductile phase toughened composites with uniform fine scale microstructures. This paper attempts to classify these approaches in perspective, discuss the benefit of in-situ composites relying on the natural phase separation mechanisms, and review the current activities with emphasis on the concept of ductile phase toughening.

Copyright

References

Hide All
1. Brahney, J. H., Aerospace Engineering, August 1990, 17.
2. Anton, D. L. and Shah, D. M., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P. and Stiegler, J. O. (Mater. Res. Soc. Proc. 213, Pittsburgh, PA 1991)p.733.
3. Shah, D. M. and Anton, D. L. in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P. and Stiegler, J. O. (Mater. Res. Soc. Proc. 2–3, Pittsburgh, PA 1991)p.63.
4. Fleisher, R.L., Briant, C..L. and Field, R. D. in High Temperature Ordered Intermetallic Alloys IV, edited by A.Johnson, L., Pope, D. P. and Stiegler, J. O. (Mater. Res. Soc. Proc. 213, Pittsburgh, PA 1991)p.463.
5. Anton, D. L. and Shah, D. M., This Proceedings.
6. Rowe, R. G. and Skelly, D. W., This Proceedings.
7 Ashby, M. F., in Strengthening Methods in Crystals, edited by Kelly, A. and Nicholson, R. B. ( Elsvier, New York, 1971)
8. Bouse, G. K. and Mihalisin, J. R. in Superalloys. Supercomposites and Superceramics, edited by Tien, J.K. and Caulfield, T. (Academic Press, Boston, 1989), p. 105.
9. Elliott, David J., Microlithography Process Technology for IC Fabrication, McGraw-Hill, New York, 1986.
10. Jain, Faquir C., University of Connecticut, (Private Communication).
11. Koskinen, J. and Johnson, H. H., Material Research Society Symposium Proceedings, 130,1989.
12 Gettelman, Ken M., “Stereolithography: Fast Model Making,” Modem Machine Shop, October 1989, pp. 100–107.
13. Ashby, M. F., Blunt, F. J. and Bannister, M., Acta Metall., 32 18471857, (1989).
14. Deve, H. E. and Maloney, M. J., Acta Metall. Mater., 32, 22752284, (1991).
15. Cao, H. C. et al., Acta Metall., 37, 29692977, (1989).
16. Shah, D. M. and Anton, D. L., Materials Science and Engineering A, A153, 402409,(1992)
17. Mazdiyasni, S. and Miracle, D. B. in Intermetallic Matrix Composites edited by Anton, D. L., Martin, P. L., Miracle, D. B. and McMeeking, R., (Mater. Res. Soc. Proc. 194, Pittsburgh, PA 1990)p.155.
18. Bertero, G., Hofmeister, W. H., Robinson, M. B. and Bayuzick, R. J., Met.Trans. A, 22, 2713(1991).
19. Johnson, D., Joslin, S. and Oliver, Ben F., This Proceedings.
20. Chang, Keh-Minn, This Proceedings.
21. Pope, D. P. and Romanow, W. J. (Private Communication).
22. Darolia, R., JOM, March 1991, 44.
23. Subramanian, P. R. et al. in Intermetallic Matrix Composites edited by Anton, D. L., Martin, P. L., Miracle, D. B. and McMeeking, R., (Mater. Res. Soc. Proc. 194, Pittsburgh, PA 1990)p. 147.
24. Mendiratta, M. G., Levandowski, J. J. and Dimiduk, D. M., Metall. Trans. A, 22, 1573(1991).
25. Frommeyer, G., Rosenkranz, R. and Ludecke, C., Z. Metallkde, 81, 30(1990).
26. Es-Souni, M. et al. in Prc. Int. Symp. on Intermetallic Compounds (JIMIS-6), The Japan Institute of Metals, Sendai, 1991, p.525.
27. Sauthoff, G., Materials Science and Engineering, 1992, To be published.
28. Mason, D. and Aken, D. Van, in “High Temperature Intermetallic Matrix Composites,” DOD-G-AFOSR-90–0141 Annual Progress Report, March 1992, p. 15.
29. Thoma, D. J. and Perepezko, J. H., Material Science and Engineering, A155,1992, (To be published).
30. Anton, D. L. and Shah, D. M. in Intermetallic Matrix Composites edited by Anton, D. L., Martin, P. L., Miracle, D. B. and McMeeking, R., (Mater. Res. Soc. Proc. 194, Pittsburgh, PA 1990)p.45.

In-Situ Synthesis of Intermetallic Matrix Composites

  • Dilip M. Shah (a1) and Donald L. Anton (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.