Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T20:31:45.054Z Has data issue: false hasContentIssue false

In-situ Polymerization vs direct Polymer Incorporation for the Nanocomposite PSS/LDH

Published online by Cambridge University Press:  01 February 2011

Fabrice Leroux
Affiliation:
Laboratoire des Matériaux Inorganiques, UMR 6002, Université Blaise Pascal, 63177 Aubière cédex. Email: fleroux@chimtp.univ-bpclermont.fr
El Mostafa Moujahid
Affiliation:
Laboratoire des Matériaux Inorganiques, UMR 6002, Université Blaise Pascal, 63177 Aubière cédex. Email: fleroux@chimtp.univ-bpclermont.fr
Joël Cellier
Affiliation:
Laboratoire des Matériaux Inorganiques, UMR 6002, Université Blaise Pascal, 63177 Aubière cédex. Email: fleroux@chimtp.univ-bpclermont.fr
Get access

Abstract

Interleaved polystyrene sulfonate polymer between a layered double hydroxide of composition Zn2Al(OH)6Cl. nH2O are prepared either by direct exchange or by in-situ polymerization of the monomer. The latter is confirmed by 13C CP-MAS solid state NMR spectroscopy. This technique provides also clear evidence of the strong interaction between the incorporated monomer and the LDH inorganic framework. A shielding of the aromatic carbon attached to the sulfonate group is observed, this is transmitted through the carbonaceous skeleton to the vinylic carbon. The 2D structure is stabilized with the presence of organic moieties, and even more through the in-situ polymerization process, as exemplified with the conversion from Oh to Td aluminium cations environment. However the difference is diminished with the heating process. The exfoliation/restacking process is found to be here unappropriate, giving rise to ill-defined materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Messersmith, P. B. and Giannelis, E.P. Chem. Mater. 6, 1719 (1994).Google Scholar
2. Ishida, H. Campbell, S. and Blackwell, J. Chem. Mater. 12, 1260 (2000).Google Scholar
3. Wang, Z. Lan, T. and Pinnavaia, T. J. Chem. Mater. 8, 2200 (1996).Google Scholar
4. Strawhecker, K. E. and Manias, E. Chem. Mater. 12, 2943 (2000).Google Scholar
5. Zhu, J. Uhl, F. M. Morgan, A. B. and Wilkie, C. A. Chem. Mater. 13, 4649 (2001).Google Scholar
6. Meyn, M. Beneke, K. and Lagaly, G. Inorg. Chem. 29, 5201 (1990).Google Scholar
7. Leroux, F. and Besse, J.-P. Chem. Mater. 13, 3507 (2001)Google Scholar
8. Miyata, S. Clays and Clay Miner. 23, 369 (1975).Google Scholar
9. Adachi-Pagano, M., Forano, C. and Besse, J.-P. Chem. Com. 91 (2000).Google Scholar
10. Leroux, F. Adachi-Pagano, M., Intissar, M. Chauvière, S., Forano, C. and Besse, J.-P. J. Mater. Chem. 11, 105 (2001).Google Scholar
11. Oriakhi, C. O. Farr, I. V. and Lerner, M. M. M.M. J. Mater. Chem. 6, 103 (1996).Google Scholar
12. Kanatzidis, M. G. Bissessur, R. DeGroot, D. C. Schindler, J. L. and Kannewurf, C. R. Chem. Mater. 5, 595 (1993).Google Scholar
13. Rey, S. Mérida-Robles, J., Han, K.-S. Guerlou-Demourgues, L., Delmas, C. and Duguet, E., Polym. Int. 48, 277 (1999).Google Scholar
14. Moujahid, El M., Besse, J. -P., and Leroux, F. J. Mater. Chem. acceptedGoogle Scholar
15. Intissar, M. Segni, R. Payen, C. Besse, J.-P. and Leroux, F. J. Solid State Chem. in press (2002).Google Scholar