Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T13:49:06.583Z Has data issue: false hasContentIssue false

In-Situ Neutron Diffraction Studies of Mixed Conducting Sr-Fe-Co-O Materials

Published online by Cambridge University Press:  16 February 2011

B.J. Mitchell
Affiliation:
IPNS, Argonne National Laboratory, 9700 S. Cass Ave., IL 60439, bmitchell@anl.gov
J.W. Richardson Jr.
Affiliation:
IPNS, Argonne National Laboratory, 9700 S. Cass Ave., IL 60439, bmitchell@anl.gov
B. Ma
Affiliation:
Energy Technology, Argonne National Laboratory, IL 60439
J.P. Hodges
Affiliation:
Materials Science Division, Argonne National Laboratory, IL 60439
Get access

Abstract

SrFeCo0.5Oy has been identified as a potential dense ceramic membrane material used for gas separation at elevated temperatures. Neutrons play an important role in the study of such materials, particularly due to the favorable scattering lengths of Fe, Co and O. In-situ neutron diffraction experiments allow these materials to be studied under a wide range of temperatures and oxygen partial pressures. Results indicate very complex behavior of individual phases during synthesis and under operational membrane conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Takahashi, T. and Iwahara, H., Energy Convers., 11, 105 (1971).Google Scholar
2. Steele, B. C. H., Mater. Sci. Eng. B-Solid State M, 13, 79 (1992).Google Scholar
3. Minh, N. Q., J. Am. Ceram. Soc., 76, 563 (1993).Google Scholar
4. DiCosimo, R., Burrington, J. D., and Grasselli, R. K., J. Catal., 102, 377 (1992).Google Scholar
5. Kendall, K. R., Navas, C., Thomas, J. K., and Loye, H.-C., Solid State Ionics, 82, 215 (1995).Google Scholar
6. Ma, B., Park, J.-H., Segre, C. U., and Balachandran, U., Mater. Res. Soc. Symp. Proc., 393, 49 (1995).Google Scholar
7. Deng, H., Zhou, M., and Abeles, B., Solid State Ionics, 74, 75 (1994).Google Scholar
8. Pei, S., Kleefisch, M. S., Kobylinski, T. P., Faber, J., Udovich, C. A., Zhang-McCoy, V., Dabrowski, B., Balachandran, U., Mieville, R. L., and Poeppel, R. B., Catal. Lett., 30, 201 (1995).Google Scholar
9. Mazanec, T. J., Cable, T. L., and Frye, J. G. Jr., Solid State Ionics, 53-56, 111 (1992).Google Scholar
10. Balachandran, U., Dusek, T. J., Sweeney, S. M., Poeppel, R. B., Mieville, R. L., Maiya, P. S., Kleefisch, M. S., Pei, S., Kobylinski, T. P., Udovich, C. A., and Bose, A. C., Am. Ceram. Soc. Bull., 74, 71(1995).Google Scholar
11. Larson, A.C. and Von Dreele, R.B., Los Alamos National Laboratory Report No. LA-UR-86-748, 1987.Google Scholar
12. Guggilla, S. and Manthiram, A., J Electrochem. Soc., 144, L120 (1997).Google Scholar
13. Kim, S., Yang, Y.L., Christoffersen, R. and Jacobson, A.J., Solid State Ionics, 109, 187 (1998).Google Scholar