Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-26T20:44:16.908Z Has data issue: false hasContentIssue false

In-Situ Magneto-Optical Kerr Effect of Epitaxial GD (0001)

Published online by Cambridge University Press:  03 September 2012

C. Chappert
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA, 95120
D. Weiler
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA, 95120
H. Tang
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA, 95120
J.C. Scott
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA, 95120
H. Hopster
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA, 95120
D.P. Pappas
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA, 95120
Get access

Abstract

We have characterized magnetization loops of epitaxially grown Gd (0001) films on W (110) in the temperature range 145≤T≤300K. This was accomplished by measuring magneto-optical Kerr loops in UHV, in the transverse geometry, using a 2×10-4 deg sensitivity differential detector and He-Ne laser light.

Films grown in the Stranski-Krastanov (SK) Mode (growth temperature 400°C) and films grown in a Frank-van-der-Merwe (FM) like Mode (growth temperature 20°C) behave significantly differently. While the room temperature grown films (FM) show square hysteresis behavior only after an annealing cycle to at least 300°C, the higher growth temperature (SK) leads to highly remanent films in the as grown state.

The hysteresis behavior of these films is most important in conjunction with recently reported spin-polarized photoemission results, which showed that the growth temperature and therefore the film morphology has a strong influence on the surface magnetic reconstruction of Gd (0001) [1].

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tang, H., Weller, D., Walker, T.G., Scott, J.C., Chappert, C., and Hopster, H., Pang, A.W., Dessau, D.S., and Pappas, D.P., Magnetic reconstructions at the Gd (0001) surface, Phys. Rev. Lett, (submitted), 1993.Google Scholar
[2] Belov, K.P., Levitin, R.Z., Nikitin, S.A. and Ped'ko, A.V., Magnetic and Magneto-elastic properties of Dysprosium and Gadolinium, Soviet Physics JETP, 13, 1961, 10961101.Google Scholar
[3] Mills, D., Phys. Rev. B, 3, 1971, 3887.Google Scholar
[4] Rau, C., J. Magn. Magn. Mater., 31–59, 1983, 874.Google Scholar
[5] Rau, C. and Eichner, S., Phys. Rev. B, 34, 1986, 6347.Google Scholar
[6] Weiler, D. and Alvarado, S.F., Preparation of remanently ferromagnetic Gd (0001), J. Appl. Phys., 59, 1986, 2908.Google Scholar
[7] Weiler, D., Alvarado, S.F., Gudat, W., Schröder, K. and Campagna, M., Observation of Surface-Enhanced Magnetic Order and Magnetic Surface Reconstruction on Gd (0001), Phys. Rev. Lett., 54, 1985, 1555.Google Scholar
[8] Wu, R., Li, C., Freeman, A.J., Fu, C.L., Phys. Rev. B, 44, 1991, 9400.Google Scholar
[9] Li, D., Hutchings, C.W., Dowben, P.A., Hwang, C., Wu, R.-T. and Onellion, M., Andrews, A.B. and Erskine, J.L., J. Magn. Magn. Mater., 99, 1991, 85.Google Scholar
[10] Li, D., Zhang, J., Dowben, P., Onellion, M., Phys. Rev. B, 1991.Google Scholar
[11] Li, Dongqi, Zhang, Jiandi, Dowben, P.A., and Onellion, M., Phys. Rev. B, 45, 1992, 7272.Google Scholar
[12] Mulhollan, G.A., Garrison, K., Erskine, J.L., Surface Magnetism of Gd (0001): Evidence of Ferromagnetic Coupling to Bulk, Phys. Rev. Lett., 69, 1992, 32403243.Google Scholar
[13] Tang, H., Weiler, D., Walker, T.G., Scott, J.C., Chappert, C., and Hopster, H., Pang, A.W., Dessau, D.S., and Pappas, D.P., Spin-polarized photoemission study of epitaxial Gd (0001) films on W (110), J. Appl. Phys., 73, 1993, 6769.Google Scholar
[14] Tang, H., Walker, T.G., Hopster, H., Pappas, D.P., Weller, D., and Scott, J.C., Spin polarization of secondary electrons from Gd (0001), J. Magn. Magn. Mater., 121, 1993, 205207.Google Scholar
[15] Li, Dongqi, Zhang, Jiandi, Dowben, P.A., and Garrison, K., J. Phys.: Condensed Matter, 5, 1993, L73.Google Scholar
[16] Li, Dongqi, Zhang, Jiandi, Dowben, P.A., Garrison, K., Johnson, P.D., Tang, H., Walker, T.G., Hopster, H., Scott, J.C.,, and Weller, D., Pappas, D.P., Canted Magnetic Moments at the Gd (0001) Surface, MRS '93, San Francisco, April 12–16, 1993 (this proceedings).Google Scholar
[17] Weller, D., Strukturelle, elektronische und Magnetische Eigenschaften von epitaktischen Gd (0001) Filmen auf W (110), PhD thesis, 1985 (unpublished).Google Scholar
[18] Salas, F.H., Weller, D., Magnetization reversal of Gd (OOOl) thin films: TBIS-and MOKE butterflies in UHV, J. Magn. Magn. Mater, (submitted), 1993.Google Scholar
[19] Farle, M., Baberschke, K., Stetter, U., Aspelmeier, A., and Gerhardter, F., Thickness dependent Curie temperature of Gd(0001)/W(110) and its dependence on the growth conditions, Phys. Rev. B (submitted 12/92), 1993.Google Scholar
[20] Stetter, U., Farle, M., Baberschke, K., Clark, W.G., Phys. Rev. B, 45, 1992, 503.Google Scholar
[21] Weiler, D. and Alvarado, S.F., Phys. Rev. B, 37, 1988, 9911.Google Scholar
[22] Bruno, P., Phys. Rev. B, 39, 1989, 865.Google Scholar