Skip to main content Accessibility help
×
Home

In-Situ Boron-Doped Epitaxial Silicon Films Grown by UHVRTCVD: Applications in Channel Engineering & Ultra-Shallow Junction Formation

  • I. Ban (a1), M. C. Öztürk (a1) and K. L. LEE (a2)

Abstract

A low-thermal budget, in-situ boron doped silicon epitaxy process for channel engineering and ultra shallow junction formation is presented. Ultra-thin silicon films (100–500 Å) have been deposited in a single-wafer Ultra High Vacuum Rapid Thermal Vapor Deposition (UHV-RTCVD) reactor using disilane (Si2H6), diborane (B2H6), and chlorine (Cl2) at temperatures between 750- 800°C. Boron doping can be varied five orders of magnitude (1016 cm-3 1021 cm3) with very abrupt doping transitions (∼50–70 Å/decade). Short channel (Leff =0.12 /μm) lightly-doped nchannel MOSFETs have been successfully realized free of ion-implantation in the channel region. As another application, ultra-shallow, defect-free, abrupt junctions (<500 Å) through diffusion from selectively-deposited in-situ boron doped films have been demonstrated.

Copyright

References

Hide All
[1] Sanganeria, M. K., Violette, K. E., and Öztüirk, M. C., “Low-temperature silicon epitaxy in an ultra high vacuum rapid thermal chemical vapor deposition reactor using disilane,”; Appl. Phys. Lett., vol.63, pp. 12251227, 1993.
[2] Violette, K. E., O'Neil, P. A., Öztürk, M. C., Christensen, K., and Maher, D. M., “On the Role of Chlorine in Selective Silicon Epitaxy by Chemical Vapor Deposition,”;; J. Electrochem. Soc., vol.143, pp. 32903296, 1996.
[3] Wakabayashi, H., Yamamoto, T., Tatsumi, T., Tokunaga, K., Tamura, T., Mogami, T., and Kunio, T., “A High Performance 0.1 um CMOS with Elevated Salicide using Novel Si-SEG Process,”; presented at IEDM, Washington, DC, 1997.
[4] Yan, R. H., Ourmazd, A., Lee, K. F., and Jeon, D. Y., “Scaling the Si Metal-Oxide- Semiconductor Field-Effect Transistor into the 0.1/pm Regime Using Vertical Channel Engineering,”;;Appl. Phys. Lett., vol.59, pp. 33153317, 1991.
[5] Aoki, M., Ishii, T., Yoshimura, T., and Kiyota, Y., “Design and Performance of 0.1-pm CMOS Devices Using Low-Impurity-Channel Transistors (LICT's),”;; IEEE Electron Device Letters, vol.13, pp. 5052, 1992.
[6] López-Villanueva, J. A., Gdimiz, F., Rolddn, J. B., Ghailan, Y., Carceller, J. E., and Cartujo, P. C., “Study of the Effects of a Stepped Doping Profile in Short-Channel MOSFET's,”;; IEEE Transactions On Electron Devices, vol.44, pp. 14251431, 1997.
[7] Takeuchi, K., Tatsumi, T., and Furukawa, A., “Channel Engineering for the reduction of Random -Dopant-Placemen t-I nduced Threshold Voltage Fluctuation,”; presented at IEDM, Washington, DC, 1997.
[8] Shahidi, G. G., Warnock, J., Acovic, A., and Agnello, P., “A High Performance 0.15 pum CMOS,” presented at Tech. Dig. Symp. VLSI Tech., 1993.
[9] Ohguro, T., Yamada, K., Sugiyama, N., Usuda, K., Akasaka, Y., Yoshitomo, T., Fiegna, C., Ono, M., Saito, M., and Iwai, H., “Tenth Micron P-MOSFETs with Ultra-thin Epitaxial Channel Laver Grown by Ultra-High-Vacuum CVD,”; presented at IEDM, Washington, DC, 1993.
[10] Matsuhashi, H., Ochiai, T., Kasai, M., Nakamura, T., and Nishikawa, S., “High- Performance Double-Layer Epitaxial-Channel PMOSFET Compatible with a Single Gate CMOSFET,” Tech. Dig. Symp. VLSI Tech., pp. 3637, 1996.
[11] Sanganeria, M. K., Ozttirk, M. C., Violette, K. E., Harris, G., Lee, A., and Maher, D. M., “Low thermal budget in-situ removal of oxygen and carbon on silicon for silicon epitaxy in an ultra high vacuum rapid thermal chemical vapor deposition reactor,”;; Appl. Phys. Lett., vol.66, pp. 12551257, 1995.
[12] Sanganeria, M. K., Violette, K. E., Oztuirk, M. C., Harris, G., and Maher, D. M., “Boron Incorporation in Epitaxial Silicon Using Si2H6 and B2H6 in an Ultrahigh Vacuum Rapid Thermal Chemical Vapor Deposition Reactor, ”;; J. Electrochem. Soc., vol.142, pp. 285289, 1995.
[13] P. A. O'Neil, Öztirk, M. C., Violette, K. E., Batchelor, D., Christensen, K., and Maher, D. M., “Optimization of Process Conditions for Selective Silicon Epitaxy Using Disilane, Hydrogen, and Chlorine,”;; J. Electrochem. Soc., vol.144, pp. 33093315, 1997.
[14] Morgenstern, T., Kuhne, H., Kokovin, G. A., Testova, N. A., and Titov, A. A., “Suppression of Epita-xial Silicon Layer Doping with Boron in the Presence of Hydrogen Chloride,”;; Cryst. Res. Technol., vol.22, pp. 7583, 1987.
[15] Hintzen, H. T. J. M., Bloem, J., and Giling, L. J., “The Incorporation of Boron in Silicon Epitaxial Layer Growth in the Presence of Small amounts of Water,”;; J. Electrochern. Soc.: SOLID-STATE SCIENCE AND TECHNOLOGY, vol.131, pp. 19001906, 1984.
[16] Kuhne, H., Fischer, A., Öztürk, M. C., and Sanganeria, M. K., “On the Mechanism of Boron Incorporation during Silicon Epitaxy by Means of Chemical Vapor Deposition,”;; J. Electrocheni. Soc., vol.143, pp. 634639, 1996.
[17] Agarwal, A., Eaglesham, D. J., Gossmann, H.-J., Pelaz, L., Herner, S. B., Jacobson, D. C., Haynes, T. E., Erokhin, Y., and Simonton, R., “Boron-Enhanced-Diffusion Of Boron: The Limiting Factor For Ultra-Shallow Junctions,” presented at IEDM, 1997.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed