Skip to main content Accessibility help

Inorganic Photo-sensitized Transparent Conductive Oxide (TCO) Nanocomposite Thin Films for Photovoltaic (PV) Energy Conversion

  • Cary G. Allen (a1), Grace H. Shih (a2) and B.G. Potter (a3)


Nanophase semiconductor composites are widely researched for the development of third-generation photovoltaic (PV) devices. Through quantum-size effects and phase assembly manipulation the optical absorption and carrier transport properties of nanocomposite films can be influenced. We investigate the potential for improved PV-relevant material performance by examining the photo-sensitization of indium-tin-oxide (ITO) with nanophase germanium (Ge). Nanocomposite films are produced by a sequential, RF-magnetron sputter deposition technique. Deposition control and post-deposition annealing are used to demonstrate the manipulation of the extended-assembly of the nanocrystalline Ge phase. Optical absorption characteristics were correlated to variations in the composite film structure as confirmed by transmission electron microscopy. In addition to structure-dependent variation in spectral absorption, spectrally resolved photoconductivity measurements demonstrate enhanced photoconductivity of composite films associated with the incorporation of the Ge phase into the ITO host. These results support the further evaluation of such nanocomposite TCO materials in optoelectronic devices, including PV systems.



Hide All
1 Efros, A. L. and Efros, A. L., Sov. Phys. Semicond. 16, 772 (1982).
2 Brus, L. E., J. Chem. Phys. 79, 5566 (1983).
3 Nozic, A., Nano Lett Lett. 5, 865 (2005).
4 Schaller, R. D. and Klimov, V. I., Phys. Rev. Lett Lett. 92, 186601 (2004).
5 Green, M.A., Nanotechnology 11, 401 (2000).
6 Peng, X., et al., Nature 404, 59 (2000).
7 Konle, J., Presting, H., Kibbel, H. and Banhart, F., Mater. Sci. Eng. B 89, 160 (2002).
8 Maeda, Y., et al., Appl. Phys. Lett. 59, 3168 (1991)
9 Bukowski, T. J., et al., J. Noncrystal. Solids 274, 87 (2000).
10 Chatterjee, S., Goyal, A., and Shah, S., Mater. Lett. 60, 3541 (2006).
11 Teng, C. W., et al., Appl. Phys. Lett. 76, 43 (2000).
12 Shih, G. H., et al., Solar Energy Mater. & Sol. Cells DOI 10.1016/j.solmat.2009.12.026 (2009).
13 Song, D., et al., Sol. Energy Mater. & Sol. Cells 92, 474 (2008).
14 Rajendra, S., et al., IEEE Trans. Electron Devices 27, 656 (1980).
15 Sládková, J., Czech. J. Phys., 27, 943 (1976).
16 Yan, C., Zhang, T., Lee, P.S., Cryst. Growth Des. 8 3144 (2008).
17 Chatterjee, S., Solar Energy, 82, 95 (2008).
18 Hullavarad, S., et al., Nanoscale Res. Lett. DOI 10.1007/s11671-009-9414-7 (2009).
19 Li, J.Z., et al., Appl. Phys Lett. 69, 1474 (1996).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed