Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T16:54:46.976Z Has data issue: false hasContentIssue false

InN-Based Ohmic Contacts to AlInN

Published online by Cambridge University Press:  10 February 2011

S. M. Donovan
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville,
F. Ren
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ,
J. D. MacKenzie
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville,
C. R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville,
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville,
K. Jones
Affiliation:
U. S. Army Research Lab, Ft. Monmouth, NJ.
Get access

Abstract

In order to maximize the performance of III-Nitride devices, it is necessary to develop thermally stable low resistance Ohmic contacts to III-N based electronic structures. This paper reports on the utility of InN as an aid to contact formation on widegap materials such as InAIN. For n-type materials, several questions relating to the growth conditions have been explored. Specifically, the impact of substrate type (GaAs vs. Sapphire), cap layer growth temperature and V/III ratio on contact resistance has been investigated. It was found that the use of sapphire substrates combined with high growth temperatures (575°C) and high V/III ratios produced acceptable contact resistances (∼10−6Ohm-cm2) to InAIN.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Strite, S. and Morkoc, H., Vac, J.. Sci. Technol. B10 1237 (1992) and references therein.Google Scholar
2. Ren, F., Chu, S. N. G., Abernathy, C. R., Fullowan, T. R., Lothian, J. and Pearton, S. J., Semicond. Sci Tech. 7 793 (1992).Google Scholar
3. Hovel, H. J. and Cuomo, J. J., Appl. Phys. Lett. 20, 71 (1972).Google Scholar
4. Kubota, K., Kobayashi, Y., and Fujimoto, K., J. Appl. Phys. 66, 2984 (1989).Google Scholar
5. Tansley, T. L. and Egan, R. J., Mater. Res. Soc. Symp. Proc. 242, 395 (1992).Google Scholar
6. Sullivan, B. T., Parsons, R. R., Westra, K. L., and Brett, M. J., J. Appl. Phys. 64, 4144 (1988).Google Scholar
7. Bryden, W. A., Ecelberger, S. A., Morgan, J. S., Poehler, T. O., and Kistenmacher, T. J., Mater. Res. Soc. Symp. Proc. 242, 409 (1992).Google Scholar
8. Kistenmacher, T. J., Ecelberger, S. A., and Bryden, W. A., Mater. Res. Soc. Symp. Proc. 242, 441 (1992).Google Scholar
9. Osamura, K., Naka, S., and Mukakami, Y., J. Appl. Phys. 46, 3432 (1975).Google Scholar
10. Matsuoka, T., J. Cryst. Growth 124, 433 (1992).Google Scholar
11. Hoke, W. E., Lemonias, P. J., and Weir, D. G., J. Cryst. Growth 111, 1024 (1991).Google Scholar
12. Ren, F., Vartuli, C. B., Pearton, S. J., Donovan, S. M., Mackenzie, J. D., Shul, R. J., Zolper, J. C., Lovejoy, M. L., Baca, A. G., Hagerott-Crawford, M., and Jones, K. A., J. Vac. Sci. Technol. A15 (1997).Google Scholar