Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T00:28:24.483Z Has data issue: false hasContentIssue false

Initial Stages of Precipitation in the Cu-Be Alloys

Published online by Cambridge University Press:  21 February 2011

J.M. Pelletier
Affiliation:
Groupe 'Etudes de Mdtallurgie Physique et de Physique des Matdriaux LA 341 INSA de LYON, Bat.502 69621, Villeurbanne, France
G. Vigier
Affiliation:
Groupe 'Etudes de Mdtallurgie Physique et de Physique des Matdriaux LA 341 INSA de LYON, Bat.502 69621, Villeurbanne, France
C. Mai
Affiliation:
Groupe 'Etudes de Mdtallurgie Physique et de Physique des Matdriaux LA 341 INSA de LYON, Bat.502 69621, Villeurbanne, France
Get access

Abstract

The clustering in Cu-Be alloys lead to large modifications of the X-ray scattering curves and to increases of both electrical resistivity and thermopower. The microstructure is investigated in the initial stages of precipitation : small clusters exist in the quenched state, but no spherical precursor precipitates are observed before the formation of plate-like G.P. zones. The evolution of the transport properties is qualitatively analyzed and the deformation effect induced by anisotropic particles is considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wilkes, P., Acta Metall., 16, 153, (1968).Google Scholar
2. Wilkes, P., and Jackson, M.M., Met. Sci. J., 3 130, (1969).Google Scholar
3. Phillips, V.A. and Tanner, L.E., Acts Metall., 21, 441, (1973).Google Scholar
4. Rioja, R.J. and Laughlin, D.E., Acts Metall., 2 1301, (1980).Google Scholar
5. Pelletier, J.M., Merlin, J. and Borrelly, R., Mat. Sci. Eng. 33, 95, (1978).Google Scholar
6. Vigier, G. and Pelletier, J.M., Acta Metall., 30, 1851, (1982).Google Scholar
7. Merlin, J., Manzioni, V.H., Fouquet, F. and Vigier, G., Mem. Sci. Rev. Met., 75, 327, (1978).Google Scholar
8. Vigier, G. and Merlin, J., Philos. Mag. B, 47, 299, (1983).Google Scholar
9. Pelletier, J.M., Borrelly, R. and Pernoux, E., Phys. Stat. Sol. (A), 39, 525, (1977).Google Scholar
10. Vigier, G., Pelletier, J.M. and Merlin, J., Same Issue.Google Scholar
11. Merlin, J., Vigier, C., Pelletier, J.M. and Borrelly, R., Surf. Sci., 1 556, (1981).Google Scholar
12. Guinier, A. and Jacquet, P., C.R. Acad. Sci. Paris, 217, 22, (1943).Google Scholar
13. Kratky, O. and Porod, G., J. Colloid Science, 4 35, (1949).Google Scholar
14. Blatt, F.J., Schroeder, P.A., Foiles, C.L. and Greig, D., “Thermoelectric Power of Metals”, Plenum Press Ed., New York, (1976).Google Scholar
15. Crussard, C. and Aubertin, F., Revue De Metall., 45, 402, (1948).Google Scholar
16. Pelletier, J.M., Borrelly, R. and Gobin, P.F., Scripta Metall., 11, 553, (1977).Google Scholar
17. Hillel, A., Edwards, J.T. and Wilkes, P., Philos. Mag., 32, 189, (1975).Google Scholar
18. Edwards, J.T. and Hillel, A.J., Philos. Mag., 3, 1221, (1977).Google Scholar