Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-19T08:48:07.959Z Has data issue: false hasContentIssue false

Initial Stages of Growth of ZnSe on Si

Published online by Cambridge University Press:  25 February 2011

R. D. Bringans
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
D. K. Biegelsen
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
L.-E. Swartz
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
F. A. Ponce
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
J. C. Tramontana
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

Zinc selenide films have been grown heteroepitaxially on Si(100) substrates by molecular beam epitaxy. The initial stages of growth are dominated by the reaction of Se and Si atoms to form the compound SiSe2- The compound formation disrupts epitaxy, and several growth methods which avoid this are described and compared. We find that room temperature deposition plus solid phase epitaxy does not lead to significant SiSex formation and yields uniformly thick films which are misoriented with respect to the substrate and contain large regions of twinned ZnSe. The use of an As monolayer on the Si surface before the start of ZnSe growth allows good ZnSe epitaxy without any Si-Se reaction or any misorientation. ZnSe films have also been used as interlayers for GaAs growth on Si. This has allowed us to obtain uniform GaAs films at thicknesses which typically manifest a coalesced island morphology for GaAs grown directly on Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krusor, B. S., Biegelsen, D. K., Yingling, R. D. and Abelson, J. R., J. Vac. Sci. and Technol., B7, 129 (1989).CrossRefGoogle Scholar
2. Uhrberg, R. I. G., Bringans, R. D., Bachrach, R. Z. and Northrup, J. E., Phys. Rev. Lett., 56, 520, (1986).CrossRefGoogle Scholar
3. Weser, T., Bogen, A., Konrad, B., Schnell, R. D., Schug, C. A. and Steinmann, W., Phys. Rev. B, 35, 8184, 1987.CrossRefGoogle Scholar
4. Bringans, R. D. and Olmstead, M. A., Phys. Rev. B, 39, 12985, (1989).CrossRefGoogle Scholar
5. Bringans, R. D. and Olmstead, M. A., J. Vac. Sci and Technol., B7, 1232 (1989).Google Scholar
6. See, for example, the discussion about the growth of CdS on Si in Holt, D. B., Thin Solid Films, 24, 1 (1974)Google Scholar
7. Weser, T., Bogen, A., Konrad, B., Schnell, R. D., Schug, C. A., and Steinmann, W., in Proceedings of the 20th Int. Gonf. on the Physics of Semiconductors, Stockholm, Engström, O., ed., World Scientific, Singapore, 1987 p. 97.Google Scholar
8. Mino, N., Kobayashi, M., Konagi, M. and Takahashi, K., J. Appl. Phys., 58, 793 (1985).CrossRefGoogle Scholar
9. Park, R. M. and Mar, H. A., Appl. Phys. Lett., 48, 529, (1986).Google Scholar
10. Bringans, R. D., Biegelsen, D. K., Ponce, F. A., Swartz, L.-E., Tramontana, J. C, Mat. Res. Soc. Symp. Proc. 198, 195 (1990).Google Scholar
11. Lee, J. W., Salano, J. P., Gale, R. P. and Fan, J. C. C., Mat. Res. Soc. Proc, 91, 33, (1987).Google Scholar
12. Yao, T., Okada, Y., Kawanami, H., Matsui, S., Imagawa, A. and Ishida, K., Mat. Res. Soc. Proc, 91, 63, (1987).CrossRefGoogle Scholar
13. Ghandi, S. K. and Ayers, J. E., Appl. Phys. Lett., 53, 1204, (1988).CrossRefGoogle Scholar
14. Varrio, J., Salokatve, A., Asonen, H., Hovinen, M., Pessa, M., Ishida, K. and Katajima, H., Mat. Res. Soc. Proc, 116, 91, (1988).Google Scholar
15. Kleiman, J., Park, R. M. and Mar, H. A., J. Appl. Phys, 64, 1201, (1988).CrossRefGoogle Scholar
16. Bringans, R. D., Biegelsen, D. K., Ponce, F. A., Swartz, L.-E., Tramontana, J. C., to be published.Google Scholar
17. Rajkumar, K. C., Madhukar, A., Liu, J. K. and Grunthaner, F. J., Appl. Phys. Lett., 56, 1160, (1990).Google Scholar
18. Lao, P., Tang, W. C., Rajkumar, K. C., Madhukar, A., Liu, J. K. and Grunthaner, F. J., J. Appl. Phys., 67, 6445 (1990).Google Scholar
19. Chadi, D. J., to be published.Google Scholar
20. Harrison, W. A., Kraut, E. A., Waldrop, J. R. and Grant, R. W., Phys. Rev. B, 18, 4402 (1978).Google Scholar
21. Biegelsen, D. K., U.S. patent 4, 935, 385, “Method of forming heterostructures having intermediate buffer films with low plastic deformation threshold for lattice mismatched heteroepitaxy”, (1990).Google Scholar
22. Lee, M. K., Horng, R. H., Wuu, D. S. and Chen, P. C., Appl. Phys. Lett., 59, 207, (1991).Google Scholar
23. Tamargo, M. C., de Miguel, J. L., Turco, F. S., Skromme, B. J., Meynadier, M. H., Nahory, R. E., Hwang, D. M. and Farrell, H. H., SPIE vol. 1037, p 73, Monitoring and Control of Plasma-Enhanced Processing of Semiconductors (1988), Society of Photo-Optical Instrumentation Engineers, Box 10, Bellingham, WA 98227.Google Scholar
24. Tamargo, M. C., de Miguel, J. L., Turco, F. S., Skromme, B. J., Hwang, D. M., Nahory, R. E. and Farrell, H. H., in “Growth and Optical Properties of Wide-Gap II-VI low dimensional Semiconductors”, McGill, T. C., Sotomayor Torres, C. M. and Gebhart, W., eds (Plenum Publishing Corp, 1989) p239.Google Scholar
25. Kobayashi, N. and Horikoshi, Y., Japn. J. Appl. Phys, 29, L236, (1990).Google Scholar