Skip to main content Accessibility help

Initial Phase Formation During Interdiffusion

  • J. H. Perepezko (a1), J. S. Park (a1), K. Landry (a1), H. Sieber (a1), M. H. da Silva Bassani (a1) and A. S. Edelstein (a2)...


In multiphase materials systems involved in coatings, composites or multilayered structures, diffusion treatments often results in the development of intermediate phases at the reaction interfaces. While diffusional growth of phases has received much attention, the initial phase evolution involves a nucleation stage as well. The development of metastable phases during solid state interdiffusion demonstrates that the nucleation reaction can be controlling in some cases. For alloy systems with extensive solubility, intermediate phase nucleation is proceeded by interdiffusional mixing in order to achieve the required supersaturation. This leads to the identification of a critical concentration gradient for the onset of phase nucleation.The concentration gradient and the relative magnitudes of the component diffusivities provide a basis for a phase selection strategy and the application of a kinetic bias to modify the phase selection. For multicomponent alloy systems, the identification of the operative diffusion pathway is central to the control of phase formation. Experimental access to the nucleation stage of reaction is facilitated in thin film multilayer samples where the results from systems with both extensive and limited solubility offer new insight into the phase formation kinetics.



Hide All
[1] Howe, J. M., Int. Mat. Rev. 38, 233 (1993).
[2] Perepezko, J. H., Bassani, M. H. da Silva, Park, J. S., Edelstein, A. S., Everett, R. K., Mat. Sci. & Eng. A 195, 1 (1995).
[3] Perepezko, J. H., Compos. Interfaces 1, 463 (1993).
[4] Thompson, C. V., J. Mater. Res. 7, 367 (1992).
[5] Desré, P. J. and Yavari, R., Phys. Rev. Lett. 64, 13 (1990).
[6] Desré, P. J., Acta Metall. Mater. 39, 725 (1991).
[7] Gusak, A. M., Ukr. Phys. J. 35, 725 (1990).
[8] Gusak, A. M. and Nasarov, A. V., J. Phys.:Condens. Matter 4, 4753 (1992).
[9] Cahn, J. W. and Hilliard, J. E., J. Chem. Phys. 28, 258 (1958).
[10] Hoyt, J. J. and Brush, L. N., J. Appl. Phys. 78,1559(1995).
[11] Coffey, K. R. and Barmak, K., Acta Metall. Mater. 42, 2905 (1994).
[12] Philibert, J., Defect and Diffusion Forum 95–98, 493 (1993).
[13] Highmore, H. J., Greer, A. L., Leake, J. A. and Evetts, J. E., Mater. Lett. 6, 401 (1988).
[14] Edelstein, A. S., Everett, R. K., Richardson, G. Y., Qadri, S. B., Altman, E. I., Foley, J. C. and Perepezko, J. H., J. Appl. Phys. 76, 7850 (1994).
[15] E. Ma Thompson, C. V. and Clevenger, L. A., J. Appl. Phys. 69,2211(1991).
[16] Michaelsen, C., Lucadamo, G. and Barmak, K., J. Appl. Phys. 80, 6689(1996).
[17] Barmak, K., Michaelsen, C. and Lucadamo, G., J. Mater. Res. 12, 133 (1997).
[18] Spaepen, F. and Thompson, C. V., Appl. Sur. Sci. 38, 1(1989).
[19] Bassani, M. H. da Silva, Perepezko, J. H., Edelstein, A. S. and Everett, R. K., Scripta Mat., 37, 227 (1997).
[20] Mehan, R. L. and McKee, D. W., J. of Mat. Sci. 11, 1009 (1976).
[21] Chou, T. C., Joshi, A. and Wadsworth, J., J. Mater. Res. 6, 796 (1991).
[22] Backhaus-Ricoult, M., Acta Metall. Mater. 40, S95 (1992).
[23] Handbook of Ternary Alloy Phase Diagrams, Vol.6, edited by Villars, P., Prince, A. and Okamoto, H. (ASM International, 1995) p. 7237.
[24] Ma, Z. Y., Ning, X. G., Lu, Y. X. Bi, J. and Wen, L. S., Scripta Metall. Mater. 31, 131 (1994).
[25] Everett, R. K., Henshaw, W., Simons, D. G. and Land, D. J., Composite Interface, 2, 31 (1996).
[26] Landry, K., Sieber, H., Sui, M. and Perepezko, J. H., This proceedings.
[27] van Loo, F.J.J., Prog. Solid St. Chem. 20,47 (1990).
[28] Zang, L.,Qui, G. and Wu, J., Scripta Metall. Mater. 32, 1683 (1995).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed