Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-22T03:37:27.749Z Has data issue: false hasContentIssue false

Initial growth stages of CeO2 nanosystems by Plasma-Enhanced Chemical Vapor Deposition

Published online by Cambridge University Press:  11 February 2011

Davide Barreca
Affiliation:
ISTM-CNR and CIMA Department, Padova University, Via Marzolo, 1 – 35131 Padova, Italy.
Alberto Gasparotto
Affiliation:
ISTM-CNR and CIMA Department, Padova University, Via Marzolo, 1 – 35131 Padova, Italy.
Eugenio Tondello
Affiliation:
ISTM-CNR and CIMA Department, Padova University, Via Marzolo, 1 – 35131 Padova, Italy.
Stefano Polizzi
Affiliation:
Physical Chemistry Department, Ca'Foscari Venice University, Via Torino, 155/B - 30170, Venezia-Mestre, Italy.
Alvise Benedetti
Affiliation:
Physical Chemistry Department, Ca'Foscari Venice University, Via Torino, 155/B - 30170, Venezia-Mestre, Italy.
Cinzia Sada
Affiliation:
INFM and Physics Department, Padova University, Via Marzolo, 8 – 35131 Padova, Italy.
Giovanni Bruno
Affiliation:
IMIP-CNR, via Orabona, 4 – 70126 Bari, Italy.
Maria Losurdo
Affiliation:
IMIP-CNR, via Orabona, 4 – 70126 Bari, Italy.
Get access

Abstract

Nanocrystalline CeO2 thin films were synthesized by Plasma-Enhanced Chemical Vapor Deposition using Ce(dpm)4 as precursor. Film growth was accomplished at 150–300°C either in Ar or in Ar-O2 plasmas on SiO2 and Si(100) with the aim of studying the effects of substrate temperature and O2 content on coating characteristics. Film microstructure as a function of the synthesis conditions was investigated by Glancing Incidence X-Ray Diffraction (GIXRD) and Transmission Electron Microscopy (TEM), while surface morphology was analyzed by Atomic Force Microscopy (AFM). Surface and in-depth chemical composition was studied by X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS).

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pollard, K. D., Jenkins, H. A. and Puddephatt, J., Chem. Mater. 12, 701 (2000) and references therein.Google Scholar
2. Balducci, G., Kaspar, J., Fornasiero, P., Graziani, M., Islam, M. S. and Gale, J. D., J. Phys. Chem. B 101, 1750 (1997).Google Scholar
3. Tschöpe, A., Ying, J. Y., Amonlirdviman, K. and Trudeau, M. L., Mat. Res. Soc. Symp. Proc. 351, 251 (1994).Google Scholar
4. Barreca, D., Gasparotto, A., Tondello, E., Sada, C., Polizzi, S. and Benedetti, A., Chem. Vap. Deposition, in press.Google Scholar
5. Lee, J. W., Pearton, S. J., Abernathy, C. R., Hobson, W. S. and Ren, F., Solid State Electronics 39, 1095 (1996).Google Scholar
6. Guo, Q. X., Matsuse, M., Nishio, M. and Ogawa, H., Jpn. J. Appl. Phys. Pt. 1 39, 5048 (2000).Google Scholar
7. Mahan, J. E., Physical Vapor Deposition of Thin Films, J. Wiley & Sons (Chichester, 2000).Google Scholar
8. Hess, D. W. and Graves, D. B., in Chemical Vapor Deposition: Principles and Applications, edited by Hitchman, M. L. & Jensen, K. F. (Academic Press, London, 1993).Google Scholar
9. Igumenov, I. K., Turgambaeva, A. E. and Semyannikov, P. P., J. Phys. IV 11, Pr3–505 (2001).Google Scholar
10. Li, F. B. and Thompson, G. E., J. Electrochem. Soc. 146, 1809 (1999).Google Scholar
11. Barreca, D., Battiston, G. A., Gerbasi, R. and Tondello, E., Surf. Sci. Spectra 7, 297 (2000).Google Scholar
12. Holgado, J. P., Munuera, G., Espinòs, J. P. and Gonzàlez-Elipe, A. R., Appl. Surf. Sci. 158, 164 (2000).Google Scholar