Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T20:01:09.143Z Has data issue: false hasContentIssue false

Infrared Switching Polymer Dispersed Liquid Crystals

Published online by Cambridge University Press:  10 February 2011

R. A. Moody
Affiliation:
Advanced Surface Technology, Inc., 9 Linnell Circle, Billerica, MA; 01821
I. H. Loh
Affiliation:
Advanced Surface Technology, Inc., 9 Linnell Circle, Billerica, MA; 01821
A. Z. Hed
Affiliation:
Invent Resources, 12 Wagon Trail, Nashua, NH, 03062
Get access

Abstract

Infrared Polymer Dispersed Liquid Crystals (PDLCs) - polymethylmethacrylate host and E7 eutectic liquid crystal mixture - are formed through an adaptation of the thermally induced phase separation process, enabling facile creation of large liquid crystal droplet formation in the polymer host outside of the normal thermodynamic limits. The PDLCs were characterized electro-optically and microscopically. The effects of the processing parameters on the droplet morphology and switching efficiency are analyzed and presented for these systems. Droplet sizes up to 15 &m have been observed with efficient switching characteristics in the 3 - 5 μm range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Drzaic, P.S., J. Appl. Phys., 60 (6), P.2142 (1986)Google Scholar
2. West, J.L., Doane, J.W., Domingo, Z., Ukleja, P., Polymer Preprints, 30 (2), P.530 (1989)Google Scholar
3. Doane, J.W., “Polymer Dispersed Liquid Crystal Displays,” in Liquid Crystals Applications and Uses Vol.1, Ed. by Bahadur, B., Cp. 14, World Scientific Pub., 1990 Google Scholar
4. Doane, J.W., “Polymer-Dispersed Liquid Crystals: Boojums at Work”, MRS Bulletin, 22, January (1991).Google Scholar
5. Zumer, S. and Doane, J.W., Phys. Rev. A, 34, P.3373 (1986)Google Scholar
6. Fergason, J.L., U.S.Patent 4,616,903 (1986)Google Scholar
7. Beni, G. and Hackwood, S., Appl. Phys. Lett., 38, P.207 (1981)Google Scholar
8. Vaz, N.A., Smith, G. W., and Montgomery, G.P., Jr., Mol. Cryst. Liq. Cryst., 146, P. 17 (1987)Google Scholar
9. West, J.L., Mol. Cryst. Liq. Cryst. Inc. Nonlin. Opt., 157, P.427 (1988)Google Scholar
10. Doane, J.W., Vaz, N.A., Wu, B.G. and Zumer, S., Appl. Phys. Lett., 48, P.269 (1986)Google Scholar
11. Doane, J.W., Chidishimo, G., Vaz, N.A.P., U.S. Patent 4,688,900 (1987)Google Scholar
12. Vaz, N.A., Smith, G.W. and Montgomery, G.P., Jr., Liq. Crst., 146, P. 1 (1987)Google Scholar
13. Doane, J.W., Golemme, A., West, J.L., Whitehead, J.B., Jr., and Wu, B.G., Mol. Cryst. Liq. Cryst, 165, 511 (1988)Google Scholar
14. Hed, A.Z., Moody, R.A., and I.H.Loh, “Heterogeneous Nucleation,” Patent Filed 8/95.Google Scholar