Skip to main content Accessibility help

Infrared Dielectric Properties of In1-xGaxAs Epilayers on InP (100)

  • N. L. Rowell (a1), G. Yu (a1), D. J. Lockwood (a1) and P. J. Poole (a1)


The concentration dependence of optical phonons in strained In1-xGaxAs epilayers grown on InP (100) by chemical beam epitaxy has been characterized with oblique angle polarized far-infrared reflectivity measurements. In this powerful method, the reflectance spectra contain sharp Berreman peaks exactly at the optical phonon frequencies. For radiation polarized in the plane of incidence (p-polarized), peaks for both the TO and LO phonons were observed. For s-polarization only the TO modes were observed. For heavily doped substrates the TO film phonons were observed as reflectance minima, whereas for lightly doped substrates they were seen as maxima. The measured spectra were curve resolved to separate the effects of the various modes which included GaAs-like longitudinal and transverse optic (LO and TO), a disorder induced, and InAs-like LO and TO phonons. The dielectric response function and phonon frequency dependences for all modes were obtained versus Ga fraction for x from 0.25 to 0.75 and the latter showed a quadratic dependence on x over this range. The effects of strain on the phonon frequencies could then be evaluated.



Hide All
1. Pearsall, T. P., Ed., GaInAsP Alloy Semiconductors (Wiley, New York, 1982), pp. 61 and 87.
2. Pizani, P. S., Boschi, T. M., and Lanciotti, F. Jr, Groenen, J. and Carles, R., Maigne, P. and Gendry, M., Appl. Phys. Lett. 72, 436 (1998).
3. Brodsky, M.H. and Lucovsky, G., Phys. Rev. Lett. 21, 990 (1968).
4. Yamazaki, S., Ushirokawa, A., and Katoda, T., J. Appl. Phys. 51, 3722 (1980).
5. Feng, Z. C., Allerman, A. A., Barnes, P. A., and Perkowitz, S., Appl. Phys. Lett. 60, 1848 (1992).
6. Estrera, J. P., Stevens, P. D., Glosser, R., Duncan, W. M., Kao, Y. C., Liu, H. Y., and Beam, E. A., Appl. Phys. Lett. 61, 1927 (1992).
7. Rowell, N. L., Shin, H. K., Lockwood, D. J., and Poole, P. J., J. Appl. Phys. 92, 629 (2002).
8. Yu, G., Rowell, N. L., Lockwood, D. J., and Poole, P. J., Appl. Phys. Lett. 81, 2175 (2002).
9. Berreman, D.W., Phys. Rev. 130, 2193 (1963).
10. Barker, A. S., in “Far Infrared Properties of Solids” (Mitra, S.S. and Nudelman, S. eds.), p. 247, Plenum, New York, 1970.
11. Grosse, P., Harbecke, B., Heinz, B., Jantz, W., and Maier, M., Appl. Phys. A 50, 7 (1990).
12. Sirenko, A.A., Bernhard, G., Golnik, A., Clark, A.M., Hao, J., Si, W., Xi, X.X., Nature 404, 373 (2000).
13. Popovic, Z. V., Cantarero, A., Camacho, J., Milutinovi, A., Latinovi, O., and Gonzalez, L., J. Appl. Phys. 88, 6382 (2000).
14. Yu, G., Ishikawa, H., Umeno, M., Egawa, T., Watanaba, J., Soga, T., and Jimbo, T., Appl. Phys. Lett. 73, 1472 (1998).
15. Rowell, N.L. and Wang, E.A., Applied Optics 35, 2927 (1996).
16. Pickering, C., Journal of Electronic Materials 10, 901 (1981).
17. Kuhl, J. and Bron, W. E., Solid State Commun. 49, 935 (1984).
18. Bhatt, A. R., Kim, K. W., and Stroscio, M. A., J. Appl. Phys. 76, 3905 (1994).
19. Ganikhanov, F., and Vallee, F., Phys. Rev. B 55, 15614 (1997).
20. Goncharenko, A. V., Gorea, O. S., Dmitruk, N. L., Mikhailik, A. A., and Romanyuk, V. R., Tech. Phys. 46, 968 (2001).
21. Shin, H. K., Lockwood, D. J., and Poole, P. J., J. Appl. Phys. 77, 229 (2000).
22. Kim, O. K., and Spitzer, W. G., J. Appl. Phys. 50, 4362 (1979).
23. Lucovsky, G. and Chen, M.F., Solid State Comm. 8, 1397 (1970).
24. Pearsall, T. P., Carles, R., and Portal, J. C., Appl. Phys. Lett. 42, 436 (1983).
25. Borroff, R., Merlin, R., Chin, A., and Bhattacharya, P. K., Appl. Phys. Lett. 53, 1652 (1988).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed