Skip to main content Accessibility help

Influences of hydrogen passivation on NIR photodetection of n-type β-FeSi2/p-type Si heterojunction photodiodes fabricated by facing-targets direct-current sputtering

  • Kyohei Yamashita (a1), Nathaporn Promros (a1), Ryūhei Iwasaki (a1), Shota Izumi (a1) and Tsuyoshi Yoshitake (a1)...


Hydrogen passivation was applied to the initial epitaxial growth of n-type β-FeSi2 thin films on p-type Si(111) substrates by facing-targets direct-current sputtering (FTDCS) in order to reduced the formation of interface states and terminate dangling bonds in the β-FeSi2 films, and the passivation effects were studied on basis of the electrical evaluation results of the formed n-type β-FeSi2/p-type Si heterojunction photodiodes. The initial growth was made at different gas inflow H2/Ar ratios ranging from 0 to 0.2. The photodetection performance of the photodiode fabricated at the ratio of 0.2 was markedly improved as compared to those of the other samples. The quantum efficiency and detectivity were 2.08 % and 1.75 × 1010 cm√Hz/W, respectively. The sample exhibited the minimum junction capacitance density of 9.2 nF/cm2. The enhanced photodetective performance should be mainly because dangling bonds that act as trap centers for photocarriers are effectively inactivated by the passivation.



Hide All
1. Suemasu, T., Negishi, Y., Takahara, K., Hasegawa, F., Jpn. J. Appl. Phys. 39 (2000) L1013
2. Ugajin, Y., Sunohara, T., Suemasu, T., Thin Solid Films: 515 (2007) 8136.
3. Bost, M. C., and Mahan, J. E., J. Appl. Phys. 58 (1985) 2696.
4. Milosavljevic, M. et al. ., Jpn. J. Appl. Phys. 49 (2010) 081401.
5. Gay, J. M., Stocker, P., and Rethore, F., J. Appl. Phys. 73 (1993) 8169.
6. Gemelli, M., and Miglio, L., Thin Solid Films 380 (2000) 282.
7. Tatar, B., Kutlu, K., and Urgen, M., Thin Solid Films 516 (2007) 13.
8. Suemasu, T., Negishi, Y., Takakura, K., and Hasegawa, F., Jpn. J. Appl. Phys. 33 (2000) L1013.
9. Suzuno, M., Murase, S., Koizumi, T., and Suemasu, T., Appl. Phys. Express 1 (2008) 021403.
10. Yoshitake, T., Inokuchi, Y., Yuri, A., and Nagayama, K., Appl. Phys. Lett. 88 (2006) 182104.
11. Shaban, M., Nakashima, K., Yokoyama, W., and Yoshitake, T., Jpn. J. Appl. Phys. 46 (2007) L667.
12. Shaban, M., Nomoto, K., Izumi, S., and Yoshitake, T., Appl. Phys. Lett. 94 (2009) 222113.
13. Han, M. et al. ., J. Crystal Growth 255 (2003) 93.
14. Shaban, M., Nakashima, K., and Yoshitake, T., Jpn. J. Appl. Phys. 46 (2007) 7708.
15. Collins, C. J. et al. ., Appl. Phys. Lett. 80 (2002) 3754.
16. Mohseni, H., Razeghi, M., Brown, G. J., and Park, Y. S., Appl. Phys. Lett. 78 (2001) 2107.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed