Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T08:41:54.755Z Has data issue: false hasContentIssue false

Influence Of The Temperature And The Light Intensity On The Metastable Transformation Of EL2

Published online by Cambridge University Press:  15 February 2011

A. Alvarez
Affiliation:
Fisica de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain, jimenez@hp9000.uva.es
J. Jimenez
Affiliation:
Fisica de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain, jimenez@hp9000.uva.es
M. A. Gonzalez
Affiliation:
Fisica de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain, jimenez@hp9000.uva.es
M. Chafai
Affiliation:
L.E.T.I., Faculté des Sciences, 50000 Meknes, Morocco.
Get access

Abstract

The temperature dependence of the metastable transformation of EL2 is explained in terms of the thermal emission of holes from the actuator level, VA. A model including the thermal release of holes from this level is presented. The numerical solution allows to account for the low photoquenching efficiency above 80 K in an accurate way. The existence of this level was postulated on the bases of the electric compensation and the temperature dependence of the metastable transformation of EL2 in semiinsulating GaAs. This level allows a complete description of the driving mechanism of the metastable transformation of EL2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Martin, G.M. and Makram-Ebeid, S.; Deep Centers in Semiconductors, edited by Pantelides, S.T. (Gordon and Breach, New York 1986), ch.6Google Scholar
2. Jiménez, J., Alvarez, A., Chafai, M., Sanz, L.F. and Bonnafé, J. J. Appl. Phys. 73, 2871 (1993).Google Scholar
3. Alvárez, A., Jiménez, J. and González, M.A.; Appl.Phys.Lett 68, 2959, 1996 Google Scholar
4. Meyer, B.K., Krambrock, K., Hofmann, D.M. and Spaeth, J.M.; Defect Control in Semiconductors, edited by Sumino, K. (Elsevier Science Publishers B.V., North-Holland, 1990) p. 735.Google Scholar
5. Wagner, J., Seelwind, H. and Kaufmann, U.; Appl.Phys. Lett 48, 1054 (1986).Google Scholar
6. Kauflnann, U., Baeumler, M., Windscheif, J. and Wilkening, W.; Appl. Phys. Lett. 49, 1254, (1986).Google Scholar
7. Baraff, G.; Proc. Seventh Conference on Semi-insulating III-V Materials, edited by Miner, C.J., Ford, W. and Weber, E.R. (Adam Hilger, Bristol, 1993), p. 11 Google Scholar
8. Bardeleben, H.J. van, Stievenard, D., Deresmes, D., Hubber, A. and Bourgoin, J.C.; Phys.Rev. B 34, 7192 (1986).Google Scholar
9. Roos, G., Schoner, A., Pensi, G., Wagner, J., Meyer, B.K. and Newman, R.C.; J.Appl.Phys. 69, 1454 (1991).Google Scholar
10. Jiménez, J., Alvarez, A., Chafai, M. and Bonnafé, J.; Phys.Rev. B 50, 14112 (1994).Google Scholar
11. Suemitsu, M., Takahasi, H. and Miyamoto, N.; Phys. Rev. B 52, 1666 (1995)Google Scholar
12. Alvárez, A., Jiménez, J., Chafai, M., González, M.A. and Bonnafé, J.; J.Appl.Phys. 73, 5004 (1993).Google Scholar
13. Fang, Z.Q. and Look, D.C.; Appl.Phys. Lett 66, 3033 (1995).Google Scholar