Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-25T22:23:43.253Z Has data issue: false hasContentIssue false

Influence of the Growth Atmosphere on the Properties of AIN Grown by Plasma - Assisted Pulsed Laser Deposition

Published online by Cambridge University Press:  15 February 2011

T. Ogawa
Affiliation:
Department of Electrical Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565, Japan
M. Okamoto
Affiliation:
Department of Electrical Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565, Japan
Y. Mori
Affiliation:
Department of Electrical Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565, Japan
T. Sasaki
Affiliation:
Department of Electrical Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565, Japan
Get access

Abstract

We have grown highly oriented aluminum nitride (AIN) thin films on Si (100) substrates by using pulsed laser deposition from sintering AIN targets. Three different growth environments, vacuum, nitrogen gas, and nitrogen plasma, have been used in order to investigate the effect of the ambient on the film quality. Rutherford backscattering spectrometry suggests that the N/Al ratio increases when the AIN film is grown in a nitrogen-contained ambient. Cathodoluminescence study implies the decrease of oxygen content in the film grown in a nitrogen plasma ambient.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Strite, S. and Morkoç, H., J. Vac. Sci. Technol. B 10, 1237 (1992).Google Scholar
2. Khan, M. A., Kuznia, J. N., Skogman, R. A.,Olson, D. T., Millan, M. M., and Choyke, W. J., Appl. Phys. Lett. 61, 2539 (1992).Google Scholar
3. Kung, P., Saxler, A., Zhang, X., Walker, D., Wang, T. C., Furguson, I., and Razeghi, M., Appl. Phys. Lett. 66, 2958 (1995).Google Scholar
4. Chaudhuri, J., Thokala, R., Edgar, J. H., and Sywe, B. S., J. Appl. Phys. 77,6263 (1995).Google Scholar
5. Kumar, S. and Tansley, T. L., Jpn. J. Appl. Phys. 34,4154 (1995).Google Scholar
6. Stevens, K. S., Ohtani, A., Kinniburgh, M., andBeresford, R., Appl. Phys. Lett. 65,321 (1994).Google Scholar
7. Norton, M. G., Kotula, P. G., and Carter, C.B., J. Appl. Phys. 70, 2871 (1991).Google Scholar
8. Seki, K., Xu, X., Okabe, H., Frye, J. M., and Halpem, J. B., Appl. Phys. Lett. 60, 2234 (1992).Google Scholar
9. Vispute, R. D., Narayan, J., Wu, H., and Jagannadham, K., J. Appl. Phys. 77,4724 (1995).Google Scholar
10. Lin, W. T., Meng, L. C., Chen, G. J., and Liu, H. S., Appl. Phys. Lett. 66, 2066 (1995).Google Scholar
11. Vispute, R. D., Wu, H., andNarayan, J., Appl. Phys. Lett. 67, 1549(1995).Google Scholar
12. Brafman, O., Lengyel, G., Mitra, S. S., Gielisse, P. J., Plendl, J. N., and Mansur, L. C., Solid State Commun. 6, 523 (1968)Google Scholar
13. Changwen, W. and Ling, L., J. Non-Cryst. Solids 112, 296 (1989)Google Scholar
14. Kumar, S. and Tansley, T. L., Jpn. J. Appl. Phys. 34, 4154 (1995).Google Scholar
15. Youngman, R. A. and Harris, J. H., J. Am. Ceram. Soc. 73,3238 (1990).Google Scholar
16. Harris, J. H., Youngman, R. A., and Teller, R. G., J. Mater. Res. 5, 1763 (1990).Google Scholar