Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T21:18:01.678Z Has data issue: false hasContentIssue false

Influence of stress on structural and dielectric anomaly of Bi2(Zn1/3Ta2/3)207 thin films

Published online by Cambridge University Press:  01 February 2011

Jun Hong Noh
Affiliation:
School of Materials Science & Engineering, College of Engineering, Seoul National University, Seoul, Korea 1Corresponding author, E-mail address: kshongss@plaza.snu.ac.kr
Hee Bum Hong
Affiliation:
School of Materials Science & Engineering, College of Engineering, Seoul National University, Seoul, Korea 1Corresponding author, E-mail address: kshongss@plaza.snu.ac.kr
Kug Sun Hong*
Affiliation:
School of Materials Science & Engineering, College of Engineering, Seoul National University, Seoul, Korea 1Corresponding author, E-mail address: kshongss@plaza.snu.ac.kr
*
1Corresponding author: E-mail address:kshongss@plaza.snu.ac.kr
Get access

Abstract

Bi2(Zn1/3Ta2/3)2O7 (BZT) thin films were grown on the (111) oriented Pt/TiOx/SiO2/Si substrates using a pulsed laser deposition (PLD) technique. BZT thin films deposited at an oxygen partial pressure of 400 mTorr have the non-stoichiometric anomalous cubic phase despite the BZT target was the monoclinic phase. Compositions, the lattice mismatch, the interfacial layer and the residual stress in the film were investigated as the factors which may affect the formation of the anomalous cubic phase. Among them, the coherent interfacial layer which formed at high oxygen pressures resulted in the formation of the cubic phase by reducing the internal stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ang, C., Yu, Z., Youn, H. J., Randall, C. A., Bhalla, A. S., Cross, L. E., Lanagan, M., Appl. Phys. Lett.., 82, 3734 (2003)Google Scholar
2. Ang, C., Yu, Z., Youn, H. J., Randall, C. A., Bhalla, A. S., Cross, L. E., Nino, J., Lanagan, M., Appl. Phys. Lett.., 80, 4807 (2003)Google Scholar
3. Youn, H., Sogabe, T., Randall, C. A., Shrout, T. R., and Lanagan, M. T., J. Am. Ceram. Soc.. 84, 2557 (2001)Google Scholar
4. Levin, I., Clive, C. A., Nino, J., Lanagan, M. T., J. Mater. Res.., 17, 1406 (2002)Google Scholar
5. Hong, H. B., D. Kim, and Hong, K. S., Jpn. J., Appl. Phys.. 42, 5172 (2003)Google Scholar
6. Hoerman, B. H., Ford, G. M., Kaufmann, L. D., Wessels, B. W., Appl Phys. Lett.. 73, 2248 (1998)Google Scholar
7. Petrov, P. K., Carlsson, E. F., Larsson, P., Friesel, M., and Ivanov, Z. G., J. Appl. Phys.. 84, 3134 (1998)Google Scholar
8. Watts, B. E., Leccabue, F., Bocelli, G., Calestani, G., Valderon, F., Demelo, O., Gonzalez, P. P., Vidal, L., and Carrillo, D., Mater. Lett.. 11, 183 (1991)Google Scholar
9. Stoney, G. G., Proc. R., Soc. London, ser. A 82, 172 (1909)Google Scholar
10. Kim, S. H., Kim, D. J., Maria, J., Kingon, A. I., Streiffer, S. K., Im, J., Auciello, O., Krauss, A. R., Appl. Phys. Lett.. 76, 496 (2000)Google Scholar
11. Kato, K., Suzuki, K., Fu, D., Nishizawa, K., and Miki, T., Appl. Phys. Lett.. 81, 3227 (2002)Google Scholar
12. Wang, X., Wang, H., and Yao, X., J. Am, Ceram. Soc.. 80, 2745 (1997)Google Scholar