Skip to main content Accessibility help

Influence of Precursor Design on the Growth of Nanomaterials

  • Sanjay Mathur (a1), Hao Shen (a1), Eva Hemmer (a1), Thomas Ruegamer (a1) and Christian Holzapfel (a2)...


Chemical processing of inorganic materials demands an understanding of the precursor chemistry at the molecular level. Although chemical compounds imitating atomic composition or bonding features of solid phases are efficient templates for a controlled evolution of nano-matter, the intrinsic advantages of this approach, such as atomic level mixing of the constituents and phase-selective synthesis, rely on the chemistry involved in the transformation of molecules to materials. Therefore, a better understanding of principles underlying chemical processing is necessary to enable a rational synthesis of materials. We have deposited MgAl2O4 thin films by the chemical vapor deposition of two Mg-Al alkoxide precursors, [MgAl2(OPri)8] and [MgAl2(OBut)8], which reveal that precursor attributes such as vapor pressure and ligand elimination mechanisms influence the microstructure and material properties of the spinel films. Under similar growth conditions, [MgAl2(OPri)8] produces rough and poorly crystalline spinel films, whereas crystalline deposits and dense microstructure were obtained in the case of [MgAl2(OBut)8]. The films were characterized by XRD, SEM, TEM, XPS and nano-indentation studies.



Hide All
1. Mathur, S. and Shen, H. in Encyclopedia of Nanoscience and Nanotechnology, Ed. Nalwa, H., American Scientific Publisher 4, 131 (2004).
2. (a) Gillan, E. G. and Barron, A. R., Chem. Mater., 9, 3037 (1997).
(b) Boyle, T. J., Tyner, R. P., Alam, T. M., Scott, B. L., Ziller, Z. W. and Potter, B. G., J. Am. Chem. Soc., 121, 12104 (1999).
(c) Jungemann, H. and Jansen, M., Mater. Res. Innov., 2, 200 (1999).
(d) Malik, M. A., Revaprasdu, N. and O'Brien, P., Chem. Mater., 13, 913 (2001).
(e) Mathur, S. in Chemical Physics of Thin Film Deposition – Processes for Micro- and Nano- Technologies, Ed. Pauleau, Y., Kluwer Academic Publishers, 91 (2002).
3. Lange, F. F. in Chemical Processing of Advanced Materials, Eds. Hench, L. L. and West, J. K., John Wiley & Sons, 611 (1992).
4. (a) Mathur, S., Shen, H., Lecerf, N., Kjekshus, A., Fjellvag, H., and Goya, G. F., Adv. Mater., 14, 1405 (2002).
(b) Mathur, S., Shen, H., Rapalaviciute, R., Kareiva, A., and Donia, N., J. Mater. Chem., 14, 3259 (2004).
5. (a) Bradley, D. C., Mehrotra, R. C., and Gaur, D. P., Metal Alkoxides, Academic Press, London (1978).
(b) Meese-Marktscheffel, J. A., Fukuchi, R., Kido, M., Tachibana, G., Jensen, C. M., Gilje, J. W., Chem. Mater. 5, 755 (1993).
6. Mathur, S., Veith, M., Ruegamer, T., Hemmer, E., and Shen, H., Chem. Mater., 16, 1304 (2004).
7. Tabor, D, The Hardness of Metals, Oxford Clarend on Press (1951).
8. (a) Somekawa, H., Nieh, T.G. and Higashi, K., Scripta Mater., 50, 1361 (2004).
(b) Petch, J., Iron, J., Steel Inst., 174, 25 (1953).
(c) Hall, E. O., Proc. Phys. Soc. London B, 64, 747 (1951).

Influence of Precursor Design on the Growth of Nanomaterials

  • Sanjay Mathur (a1), Hao Shen (a1), Eva Hemmer (a1), Thomas Ruegamer (a1) and Christian Holzapfel (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed