Skip to main content Accessibility help
×
Home

Influence of Precursor Chemistry on Phase Evolution and Stability Range in the Potassium-Beta Alumina System

  • Günter W. Schäfer (a1), Arnoud P. de Kroon (a1) and Fritz Aldinger (a1)

Abstract

The beta alumina structures are known for their high ionic mobility within the lattice. This lead to the development of the Na-β”-alumina polycrystal as solid electolyte in Na/S and Na/NiCl2 batteries. The K-β”-alumina compound is a suitable precursor material to establish proton conducting materials by ion exchange. Tests with single crystal and polycrystalline samples showed the possible application in fuel cells operating between 150 - 250 °C.

One of the main problems to be solved is the correlation between composition and phase evolution of either β- or β”-phase, another problem occuring during sintering is the high vapor pressure of the alkaline oxide. This leads to the decomposition of the highly conductive β”-alumina phase into β-alumina or corundum phases and lowers significantly the ionic conductivity.

We investigated the beta alumina phase evolution using alumina raw materials with different crystallographic structure and grain size. The influence of initial alkaline content and dopant concentration on phase formation and phase stability under sintering conditions has been investigated. A refined phase diagram for Na- and K-beta aluminas will be presented.

Copyright

References

Hide All
1 Briant, J. L., Farrington, G. C.: J. Solid State Chem. 33, 385 (1980)
2 Yamaguchi, G., Suzuki, K. Bull.Chem.Soc.Japan 41, 93 (1968)
3 Crosbie, G. M., Tennenhouse, G. T.: J. Am. Ceram.Soc. 65, 187 (1982M)
4 Nicholson, P. S., Munshi, M. Z. A., Singh, G., Seyer, M., Bill, M. F.: Solid State Ionics 18&19, 699(1986)
5 Park, S. M., Hellstrom, E. E.: Solid State Ionics, 46, 221 (1991)
6 Roth, R. S.: Adv. Chem. Ser. 186, 391 (1980)
7 Moya, J. S., Criado, E., De Aza, S.: J. Mater. Sci. 17, 2213 (1982)
8 Plante, E. R., Olson, C. D., Negas, T. in: Proc. of Sixth International Conference on Magnetohydrodynamic Electrical Power Generation, Washington DC, June 1975, p. 211
9 Briant, J. L., Farrington, G. C.: Solid State Ionics 5, 207 (1981)
10 De Nuzzio, J. D., Farrington, G. C.: J. Solid State Chem. 79, 65 (1989)
11 Seevers, R., De Nuzzio, J., Farrington, G. C., Dunn, B.: J.Solid State Chem. 50, 295 (1983)
12 Schäfer, G. W., Weppner, W.: Solid State Ionics 53–56, 559 (1992)
13 De Kroon, A. P., W.Schäfer, G., Aldinger, F. Chem. Mater. in press (1995)
14 Collin, G., Comes, R., Boilot, J.-P., Colomban, P. Solid State Ionics 28–30, 324 (1988)
15 Eliezer, I., Howald, R. A. High Temperature Science 10, 1 (1978)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed