Skip to main content Accessibility help
×
Home

The Influence of Nitrogen Implantation on the Hydrogen Distribution in Titanium Observed by Nra and Xps

  • M. Soltani-Farshi (a1), H. Baumanna (a1), B. Baretzky (a2), D. Rück (a3) and K. Bethgea (a1)...

Abstract

Titanium has a strong chemical affinity and can absorb and store large amounts of hydrogen, which causes embrittlement of the material. Ion implantation is applied to improve wear behavior e.g. of titanium alloys, which are used for load bearing components of hip and knee joint prostheses. Nitrogen implantation influences the hydrogen content in the near surface region of a commercially available pure titanium. 150 keV 15N-ions were implanted at RT into titanium samples with a fluence of 6 × 1017 ions/cm2 and subsequently annealed at 500°C under high vacuum conditions. For comparison N was also implanted at a sample temperature of 500°C. Concentration depth profiles of implanted nitrogen and accumulated hydrogen were measured with Nuclear Reaction Analysis (NRA) and compared to nitrogen and titanium depth profiles obtained with X-ray Photoelectron Spectroscopy (XPS). The results indicate a relation between hydrogen concentration and the formation of Ti-N bonds.

Copyright

References

Hide All
[1] Deamaley, G. et al., Nucl. Instr. and Meth. B7/8 (1985) 188.
[2] Follstaedt, D. M. et al., Nucl. Instr. and Meth. B12 (1985) 359.
[3] Preece, C. M. and Hirvonen, J. K., Ion Implantation Metallurgy (AIME, Warrendale, Pa, 1980).
[4] Hirvonen, J. P. et al., Appl. Phys. Lett. 51 (1987) 232.
[5] Brading, H. J. et al., Nucl. Instr. and Meth. B66 (1992) 230.
[6] Pivin, J. C., Pons, F., Takadoum, J. and Pollock, H. M., J. Mater. Sci. 22 (1987) 1087.
[7] Martinella, R., Chevallard, G. and Tosello, C., Ion Implantation and Ion Beam Processing of Materials, Hubler, G. K., Holland, O. W., Clayton, C. R. and White, C. W. (New York, 1984) 711
[8] Baumann, H., Th., Lenz and Rauch, F., Mater. Sci. Eng. 69 (1985) 421.
[9] Hoffmann, B., Baumann, H. and Rauch, F., Nucl. Instr. and Meth. B15 (1986) 361.
[10] Hoffnmann, B., Baumann, H., Rauch, F. and Bethge, K., Nucl. Instr. and Meth. B36 (1989) 157.
[11] Abramov, E. and Eiiezer, D., Hydrogen effect on material behaviour; Metals & Materials Society (1989).
[12] Asaoka, T. et.al., Corrosion, 34 (1978) 3947.
[13] Aucouturier, M. et. Al., Metallography, 11 (1978) 521.
[14] Pressouyre, G. M. and Bernstein, I. M., Metall. Trans., 9A (1978) 15711580.
[15] Soltani-Farshi, M., Baumann, H., Rück, D. and Bethge, K., MRS-Fall 97, Vol.504 (1997)
[16] Link, F., Baumann, H., Bethge, K., Nucl. Inst. Meth. (1998) in press
[17] Vasile, M. J., Emerson, A. B. and Baiocchi, F. A., J. Vac. Sci. Technol. A8 (1990) 99
[18] Neu, K., Baumann, H., Angert, N., Rück, D. and Bethge, K., NIM B89 (1994) 379
[19] Soltani-Farshi, M., Baumann, H., Research-articleück, D. and Bethge, K., NIM B127/128 (1997) 787
[20] Soltani-Farshi, M., Baumann, H., Rfück, D., Richter, E., Bethge, K., Surf. Coat. & Tech. (1998)
[21] Massalski, T. B., Binary Alloy Phase Diagrams, American Society for Metals, Metals Park, Ohio (1986).
[22] Wood, F. W. and Paasche, O. G., Microstructural Science, Vol.2(1974), 101.
[23] Toth, L. E., Refractory Materials, Transition Metal Carbides and Nitrides, Academic Press Inc. New York, NY, (1971), Vol.7, 88.
[24] Pivin, J. C, Zheng, P. and Ruault, M. O., Europhys. Lett. 8 (1988) 689.
[25] Pivin, J. C, Zheng, P. and Ruault, M. O., Mat. Sci. Eng. A115 (1989) 8388.
[26] Pivin, J. C, Zheng, P. and Ruault, M. O., Philos. Mag. Lett. 59 (1989) 25.
[27] Soltani-Farshi, M., Baumann, H., Anwand, W., Brauer, G., Coleman, P. G., Richter, E., Bethge, K., MRS-Spring 98, Symposium Z (1998)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed