Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-22T01:07:36.287Z Has data issue: false hasContentIssue false

The Influence of Nitrogen Implantation on the Hydrogen Distribution in Titanium Observed by Nra and Xps

Published online by Cambridge University Press:  10 February 2011

M. Soltani-Farshi
Affiliation:
IKF, University of Frankfurt, August-Euler-Str. 6, 60486 Frankfurt, Germany, M.Soltani@gsi.de
H. Baumanna
Affiliation:
IKF, University of Frankfurt, August-Euler-Str. 6, 60486 Frankfurt, Germany, M.Soltani@gsi.de
B. Baretzky
Affiliation:
Max-Planck-Institut fir Metallforschung, Seestr. 92, 70174 Stuttgart, Germany
D. Rück
Affiliation:
Center for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt, Germany
K. Bethgea
Affiliation:
IKF, University of Frankfurt, August-Euler-Str. 6, 60486 Frankfurt, Germany, M.Soltani@gsi.de
Get access

Abstract

Titanium has a strong chemical affinity and can absorb and store large amounts of hydrogen, which causes embrittlement of the material. Ion implantation is applied to improve wear behavior e.g. of titanium alloys, which are used for load bearing components of hip and knee joint prostheses. Nitrogen implantation influences the hydrogen content in the near surface region of a commercially available pure titanium. 150 keV 15N-ions were implanted at RT into titanium samples with a fluence of 6 × 1017 ions/cm2 and subsequently annealed at 500°C under high vacuum conditions. For comparison N was also implanted at a sample temperature of 500°C. Concentration depth profiles of implanted nitrogen and accumulated hydrogen were measured with Nuclear Reaction Analysis (NRA) and compared to nitrogen and titanium depth profiles obtained with X-ray Photoelectron Spectroscopy (XPS). The results indicate a relation between hydrogen concentration and the formation of Ti-N bonds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Deamaley, G. et al., Nucl. Instr. and Meth. B7/8 (1985) 188.Google Scholar
[2] Follstaedt, D. M. et al., Nucl. Instr. and Meth. B12 (1985) 359.Google Scholar
[3] Preece, C. M. and Hirvonen, J. K., Ion Implantation Metallurgy (AIME, Warrendale, Pa, 1980).Google Scholar
[4] Hirvonen, J. P. et al., Appl. Phys. Lett. 51 (1987) 232.Google Scholar
[5] Brading, H. J. et al., Nucl. Instr. and Meth. B66 (1992) 230.Google Scholar
[6] Pivin, J. C., Pons, F., Takadoum, J. and Pollock, H. M., J. Mater. Sci. 22 (1987) 1087.Google Scholar
[7] Martinella, R., Chevallard, G. and Tosello, C., Ion Implantation and Ion Beam Processing of Materials, Hubler, G. K., Holland, O. W., Clayton, C. R. and White, C. W. (New York, 1984) 711 Google Scholar
[8] Baumann, H., Th., Lenz and Rauch, F., Mater. Sci. Eng. 69 (1985) 421.Google Scholar
[9] Hoffmann, B., Baumann, H. and Rauch, F., Nucl. Instr. and Meth. B15 (1986) 361.Google Scholar
[10] Hoffnmann, B., Baumann, H., Rauch, F. and Bethge, K., Nucl. Instr. and Meth. B36 (1989) 157.Google Scholar
[11] Abramov, E. and Eiiezer, D., Hydrogen effect on material behaviour; Metals & Materials Society (1989).Google Scholar
[12] Asaoka, T. et.al., Corrosion, 34 (1978) 3947.Google Scholar
[13] Aucouturier, M. et. Al., Metallography, 11 (1978) 521.Google Scholar
[14] Pressouyre, G. M. and Bernstein, I. M., Metall. Trans., 9A (1978) 15711580.Google Scholar
[15] Soltani-Farshi, M., Baumann, H., Rück, D. and Bethge, K., MRS-Fall 97, Vol.504 (1997)Google Scholar
[16] Link, F., Baumann, H., Bethge, K., Nucl. Inst. Meth. (1998) in pressGoogle Scholar
[17] Vasile, M. J., Emerson, A. B. and Baiocchi, F. A., J. Vac. Sci. Technol. A8 (1990) 99 Google Scholar
[18] Neu, K., Baumann, H., Angert, N., Rück, D. and Bethge, K., NIM B89 (1994) 379 Google Scholar
[19] Soltani-Farshi, M., Baumann, H., Research-articleück, D. and Bethge, K., NIM B127/128 (1997) 787 Google Scholar
[20] Soltani-Farshi, M., Baumann, H., Rfück, D., Richter, E., Bethge, K., Surf. Coat. & Tech. (1998)Google Scholar
[21] Massalski, T. B., Binary Alloy Phase Diagrams, American Society for Metals, Metals Park, Ohio (1986).Google Scholar
[22] Wood, F. W. and Paasche, O. G., Microstructural Science, Vol.2(1974), 101.Google Scholar
[23] Toth, L. E., Refractory Materials, Transition Metal Carbides and Nitrides, Academic Press Inc. New York, NY, (1971), Vol.7, 88.Google Scholar
[24] Pivin, J. C, Zheng, P. and Ruault, M. O., Europhys. Lett. 8 (1988) 689.Google Scholar
[25] Pivin, J. C, Zheng, P. and Ruault, M. O., Mat. Sci. Eng. A115 (1989) 8388.Google Scholar
[26] Pivin, J. C, Zheng, P. and Ruault, M. O., Philos. Mag. Lett. 59 (1989) 25.Google Scholar
[27] Soltani-Farshi, M., Baumann, H., Anwand, W., Brauer, G., Coleman, P. G., Richter, E., Bethge, K., MRS-Spring 98, Symposium Z (1998)Google Scholar