Skip to main content Accessibility help

The Influence of Nitrogen Doping on the Chemical and Local Bonding Environment of Amorphous and Crystalline Ge2Sb2Te5

  • Joseph Washington (a1), Eric A. Joseph (a2), Michael A. Paesler (a3), Gerald Lucovsky (a4), Jean L. Jordan-Sweet (a5), Simone Raoux (a6), Chieh-Fang Chen (a7), Adam Pyzyna (a8), Ravi K. Dasaka (a9), Chung H. Lam (a10), Alejandro Schrott (a11), Joseph C. Woicik (a12) and Bruce Ravel (a13)...


Recent interest in phase change materials (PCMs) for non-volatile memory applications has been fueled by the promise of scalability beyond the limit of conventional DRAM and NAND flash memory [1]. However, for such solid state device applications, Ge2Sb2Te5 (GST), GeSb, and other chalcogenide PCMs require doping. Doping favorably modifies crystallization speed, crystallization temperature, and thermal stability but the chemical role of the dopant is not yet fully understood. In this work, X-ray Absorption Fine Spectroscopy (XAFS) is used to examine the chemical and structural role of nitrogen doping (N-) in as-deposited and crystalline GST thin films. The study focuses on the chemical and local bonding environment around each of the elements in the sample, in pre and post-anneal states, and at various doping concentrations. We conclude that the nitrogen dopant forms stable Ge-N bonds as deposited, which is distinct from GST bonds, and remain at the grain boundary of the crystallites such that the annealed film is comprised of crystallites with a dopant rich grain boundary.



Hide All
1 Chen, Y.C., Rettner, C.T., Raoux, S. et al., IEDM Tech. Dig., p. S30P3, 2006.
2 Ahn, S. J., Song, Y. J., Jeong, C. W. et al., 2004 IEEE Int. Electron Devices Meeting, San Francisco, CA, Dec. 2004.
3 Seo, H, Jeong, T., Park, J., Yeon, C., Kim, S. and Kim, S-Y., Jpn. J. Appl. Phys. 39, 745 (2000).
4 Raoux, S., Salinga, M., Jordan-Sweet, J. L., Kellock, A. J., J. Appl. Phys. 101, 044909 (2007).
5 Ravel, B. and Newville, M., J. Synchrotron Rad. 12, 537 (2005).
6 Rehr, J.J., Leon, J. Mustre de, Zabinsky, S.I., and Albers, T.C., J. Am. Chem. Soc. 113, 5135 (1991).
7 Newville, M., J. Synchrotron Rad. 8, 322 (2001).
8 Kim, Y., Jang, M. H., et al, App. Phys. Lett. 92, 061910 (2008).
9 Bull, C., McMillan, P. F., Itié, J., and Polian, A., Phys. stat. sol. (a) 201, 5 (2004).
10 Chambouleyron, I. and Zanatta, A.R. J. Appl. Phys., 84, 1, 1998
11 Ruddlesden, S. N. and Popper, P., Acta Cryst. 11, 465 (1958).
12 Baker, D. A., Paesler, M. A., Lucovsky, G., Agarwal, S. C., and Tayor, P. C., Phys. Rev. Lett. 96, 255501 (2006).
13 Maeda, T., Yasuda, T., Nishizawa, M. et al., Appl. Phys. Lett. 85, 3181 (2004).
14 Seo, H., Jeong, T., Park, J. et al., Jpn. J. Appl. Phys. 39, 745 (2000).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed