Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-20T01:10:23.473Z Has data issue: false hasContentIssue false

The Influence of Mechanical Stress on Hot-Carrier Degradation in Mosfet's

Published online by Cambridge University Press:  21 February 2011

Ingrid De Wolf
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Rudi Bellens
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Guido Groeseneken
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Herman E. Maes
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Get access

Abstract

Non-uniform hot-carrier degradation in n-channel polycide-gate MOSFET's with different thicknesses of the poly-Si film, and in p-channel polycide-gate MOSFET's with TiSi2- or CoSi2-gate-silicide, is studied. The n-MOSFET's with the thinnest poly-Si film, show an increased interface trap generation, while the influence of the gate-silicide material on the degradation behaviour of the p-MOSFET's is found to be very small. The results are evaluated in terms of the effect of mechanical stress on the degradation characteristics: favourable for compressive mechanical stress and unfavourable for tensile stress. A correlation with stress measurements by micro-Raman spectroscopy is made.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yamamoto, N., Iwata, S., Kume, H., IEEE Trans. ED–34, 607 (1987)CrossRefGoogle Scholar
2 Kasama, K., Tsukiji, M., Kobayashi, K., IEEE Trans., NS–34 (6), 1202 (1987)Google Scholar
3 Shaw, D.C., Lowry, L., MacWilliams, K.P., Barnes, C.E., IEEE Trans. NS–39 (6), 2146(1992)Google Scholar
4 Hamada, A., Furusawa, T., Saito, N., Takeda, E., Semicond. Sci. Technol. 7, B593 (1992)Google Scholar
5 Reuters, P.J., Giese, J., Offenbach, M., Richter, W., Ewert, S. and Balk, P., Journal de Physique, C4, no 9, Vol. 49 (1988)Google Scholar
6 Mitsuhashi, J., Nakao, S., Matsukawa, T. IEDM, 15.3, p. 386 (1986)Google Scholar
7 Groeseneken, G., Maes, H.E., Beltran, N., Keersmaeker, R.F. De, IEEE Trans. ED–31 (1), 42 (1984)CrossRefGoogle Scholar
8 Hu, C., Tam, S.C., Hsu, F.C., Ko, P.K., Chan, T.Y., Terrill, K.W., IEEE Trans. ED–32, 375 (1985)Google Scholar
9 Heremans, P., Bellens, R., Groeseneken, G., Maes, H.E., IEEE Trans. ED–35 (12), 2194 (1988)Google Scholar
10 Heremans, P., Witters, J., Groeseneken, G., Maes, H.E., IEEE Trans. ED–36 (7), 1318 (1989)CrossRefGoogle Scholar
11 Iqbal, Z., Veprek, S., Webb, A.P., Capezzuto, P., Solid State. Com. 37, 993 (1981)CrossRefGoogle Scholar
12 Wolf, I. De, Vanhellemont, J., Romano-Rodríguez, A., Norström, H., Maes, H.E., J. Appl. Phys. 71 (2), 898 (1992)CrossRefGoogle Scholar
13 Hu, S.M., J. Appl. Phys. 70 (6), R53 (1991)Google Scholar
14 Sun, S.W., Orlowski, M., Fu, K.Y., IEEE Trans. EDL–11 (7), 297 (1990)Google Scholar