Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T01:16:29.075Z Has data issue: false hasContentIssue false

Influence of Internal Interfaces on the Dielectric Properties of Ceramic Microwave Resonators

Published online by Cambridge University Press:  15 February 2011

Peter K. Davies*
Affiliation:
Department of Materials Science and Engineering; University of Pennsylvania; 3231 Walnut St., Philadelphia, PA 19104-6272
Get access

Abstract

The structures of all the prominent ceramic dielectric resonators have been found to exhibit extensive inhomogeneity. This structural disorder arises from the formation of extended defects, polytype intergrowths or variable degrees of cation order. For the systems involving a cation order-disorder reaction, e.g. ZrTiO4 and Ba(Zn1/3Ta2/3)O3, the formation of internal interfaces can have a pronounced effect on the dielectric properties. In the absence of secondary dopants the lattice strains associated with the interfaces increase the dielectric losses by as much as two orders of magnitude. However, the contributions of the interfaces can apparently be controlled, and perhaps eliminated, by introducing selected dopants that segregate and stabilize the local boundary regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wakino, K., Minai, K., and Tamura, H., J. Am. Ceram. Soc., 67[4], 278–81 (1984)Google Scholar
2. Negas, T., Yeager, G., Bell, S. and Amren, R., in “Chemistry of Electronic Ceramic Materials, Eds. Davies, P.K. and Roth, R.S., NIST, SP 804, 2138 (1990)Google Scholar
3. Shannon, R.D., J. Appl. Phys., 73(1), 348366 (1993)Google Scholar
4. Fratello, V.J. and Brandle, C.D., J. Mater. Res., 9(10), 2554–60 (1994)Google Scholar
5. Colla, E.L., Reaney, I.M. and Setter, N., J. Appl. Phys., 74(5), 3414–25 (1993)Google Scholar
6. Setter, N., personal communication.Google Scholar
7. Wei, X., Davies, P.K. and Negas, T., J. Amer. Ceram. Soc., (in preparation)Google Scholar
8. Negas, T. and Davies, P.K., unpublishedGoogle Scholar
9. Tangantsev, A., Petzelt, J. and Setter, N., Solid State Commun., 87, 1117–20 (1993)Google Scholar
10. See for example: Wakino, K., Murata, M. and Tamura, H., J. Am. Ceram. Soc., 69(1) 3437 (1986); K. Fukuda, R. Kitoh and Awai, I., J. Am. Ceram. Soc., 77(1) 149-541 (1994)Google Scholar
11. Schloemann, E., Phys. Rev., 135 [2A] A41319 (1960)Google Scholar
12. Sagala, D. A. and Nambu, S., J. Am. Ceram. Soc., 75(9) 2573–75 (1992)Google Scholar
13. Tagantsev, A.K., Ferroelectric Ceramics, 127–145 (1993)Google Scholar
14. Gurevich, V.L. and Tangantsev, A.K., Adv. Phys., 40, 719767 (1991)Google Scholar
15. Christoffersen, R. and Davies, P.K., J. Am. Ceram. Soc., 75 [3], 563–69 (1992)Google Scholar
16. Christoffersen, R. and Davies, P.K., Solid State Ionics, 57, 59 (1992)Google Scholar
17. Christoffersen, R., Davies, P.K., Wei, X. and Negas, T., J. Amer. Ceram. Soc., 77(6), 1441–51 (1994)Google Scholar
18. Davies, P.K. and Christoffersen, R., Proc. British Ceram. Soc., 52, 1327 (1994)Google Scholar
19. Davies, P.K. and Roth, R.S., J. Solid State Chem., 71, 490502 (1987)Google Scholar
20. Davies, P.K. and Roth, R.S., J. Solid State Chem., 71, 503–12 (1987)Google Scholar
21. McHale, A.E. and Roth, R.S., J. Am. Ceram. Soc., 66 [2], C18 (1983)Google Scholar
22. McHale, A.E. and Roth, R.S., J. Am. Ceram. Soc., 69 [11], 827–32 (1986)Google Scholar
23. Kawashima, S., Nishida, M., Ueda, I and Ouchi, H, J. Am. Ceram. Soc., 66 [6], 421–23 (1983)Google Scholar
24. Matsumoto, K., Hiuga, T., Takada, K., and Ichimura, H., pp. 118–21 in Proceedings of the 6th IEEE International Symposium on Application of Ferroelectrics, June 1986. Institute of Electrical and Electronic Engineers, New York, 1986.Google Scholar
25. Newnham, R.E., J. Am. Ceram. Soc., 50 [4], 216 (1967)Google Scholar
26. Bordet, P., McHale, A.E., Santoro, A., and Roth, R.S., J. Solid State Chem., 64, 3046 (1986)Google Scholar
27. Galasso, F. and Pyle, J., Inorg. Chem., 2(3), 482–84 (1963)Google Scholar
28. Galasso, F. and Pyle, J., J. Phys. Chem., 67, 1561–62 (1963)Google Scholar
29. Jacobson, A.J., Collins, B.M. and Fender, B.E.F., Acta Cryst., B32, 1083–87 (1976)Google Scholar
30. Desu, S.B. and O'Bryan, H.M., J. Am. Ceram. Soc., 68(10) 546–51 (1985)Google Scholar
31. Tamura, H., Konoike, T., Sakabe, Y. and Wakino, K., J. Am. Ceram. Soc., 67(4) C5961 (1984)Google Scholar