Skip to main content Accessibility help
×
Home

Influence of Hydrogen Plasma Treatment on He Implantation-Induced Nanocavities in Silicon

  • A. Vengurlekar (a1), S. Ashok (a1), C. L. Liu (a2), E. Ntsoenzok (a2), M. F. Barthe (a2), P. Desgardin (a2) and M. O. Ruault (a3)...

Abstract

He implantation followed by thermal anneal is a well-established technique for creating layers or bands of cavities in silicon. This process is a consequence of the interaction between He and ion-implant-induced vacancies. Applications of such cavity layers include gettering and localized minority carrier lifetime control, and compliant substrates for lattice-mismatched heteroepitaxy. Studies have shown that the presence of interstitial-type defects can lead to the shrinkage of He-cavities due to the interstitial capture by the cavities. However, few of them deal with the interaction of cavities with vacancies. Here we present results on the formation of He-cavities in Si in the presence of atomic hydrogen and vacancies produced by effusion of hydrogen. Following a helium implant, samples were hydrogenated with an electron cyclotron resonance (ECR) hydrogen plasma. Control samples without any hydrogenation were also used. We studied the influence of hydrogen on void morphology. While hydrogen enhances void size at higher energy implants, the enhancement effect is absent in lower energy implants. The results underscore the role of vacancies in void formation and growth.

Copyright

References

Hide All
1. Griffioen, C. C., Evans, J. H., de Jong, P. C. and van Veen, A., Nucl. Instrum. Methods Phys. Res. B 27, 417 (1987).
2. Raineri, V., Saggio, M. and Rimini, E., J. Mater. Res., 15(7), 1449 (2000).
3. Raineri, V., Fallica, P. G., Percolla, G., Battaglia, A., Barbagallo, M. and Campisano, S. U., J. Appl. Phys. 78, 3727 (1995).
4. Follstaedt, M. M., Myers, S. M., Petersen, G. A. and Medernach, J. W., J. Electron. Mater. 25 (1996) 157.
5. Raineri, V., Fallica, P. G. and Libertino, S., J. Appl. Phys. 79 9012 (1996).
6. Schut, H., Van Veen, A., Eijt, S. W. H., Job, R., Ulyashin, A. G. and Fahrner, W. R., Nucl. Instru. Meths. B 186 94 (2002).
7. Ulyashin, G., Job, R., Fahrner, W. R., Grambole, D. and Herrmann, F.; Diffusion and Defects Data Pt. B: Solid State Phenomena, 82–84 315 (2002).
8. Sveinbjornsson, E. O., Anderson, G. I. and Engstrom, O., Phys. Rev. B 58 780 (1994).
9. Sachse, J. U., Sveinbjornsson, E. O. and Yarkin, N., Weber, J., Mater. Sci. & Eng. B 58 134 (1999).
10. Ziegler, J. F., Biersack, J. P., and Littmark, U.; The Stopping and Range of Ions in Solids, Pergamon, New York, 1985.
11. Liu, C. L., Ntsoenzok, E., Barthe, M. F., Desgardin, P., Ashok, S., Vengurlekar, A., Alquier, D. and Ruault, M.–O., Solid State Phenomena, 95–96, 307 (2004).
12. Raineri, V., Coffa, S., Szilagyi, E., Gyulai, J. and Rimini, E., Phys. Rev. B, 61(2), 937 (2000).
13. Job, R., Beaufort, M. F., Barbot, J. F., Ulyashin, A. G. and Fahrner, W. R. in Defect and Impurity Engineered Semiconductors andDevices III, edited by Ashok, S., Chevallier, J., Johnson, N.M., Sopori, B.L. and Okushi, H., (Mater. Res. Symp. Proc. 719, Pittsburgh, PA, 2002, pp217).
14. Srikanth, K. and Ashok, S., J. Appl. Phys. 70 4779 (1991).

Influence of Hydrogen Plasma Treatment on He Implantation-Induced Nanocavities in Silicon

  • A. Vengurlekar (a1), S. Ashok (a1), C. L. Liu (a2), E. Ntsoenzok (a2), M. F. Barthe (a2), P. Desgardin (a2) and M. O. Ruault (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed