Skip to main content Accessibility help
×
Home

Influence of Halides on the Luminescence of Oxide/Anthracene/Polymer Nanocomposites

  • Dorothée V. Szabó (a1), Heike Reuter (a1), Sabine Schlabach (a1), Christoph Lellig (a1) and Dieter Vollath (a2)...

Abstract

Nanocomposites made of an oxide core of a wide band gap insulator, a lumophore monolayer of anthracene and an outer protecting layer of PMMA are studied regarding their luminescence properties and the influence of halides stemming either from the precursor used for synthesis or from the lumophore itself. Halide-free nanocomposites exhibit luminescence spectra resembling to that of anthracene with some significant differences concerning the intensity ratio and an additional peak at 420 nm. Nanocomposites made from chlorides show excimer-like spectra with broad maxima. In microanalysis residual chlorine can be detected. Chlorine-free oxide kernels, coated with 9, 10 dichloroanthracene exhibit luminescence spectra resembling to a superposition of the pure lumophores 9 chloro- and 9, 10 dichloroanthracene. It can be shown that the origin of the halide strongly influences, but does not quench the luminescence spectra of the powders. Suspensions of the chlorine containing nanocomposites in ethanol exhibit modified anthracene like spectra. This is a strong indication for dechlorination by proton-transfer in ethanol. Suspensions of the same material in water lead to spectra showing a superposition of exci-mer spectrum and modified anthracene spectrum. Here a partial dechlorination occurs.

Copyright

References

Hide All
1. Vollath, D., Lamparth, I., Szabó, D.V., in “Nanophase and Nanostructured Materials IV” edited by Komarneni, S., Parker, J.C., Vaia, R.A., Lu, G.Q., Matsushita, J.-I., (Mater. Res. Soc. Proc. 703, Pittsburgh, PA, 2002) V7.8.1–V7.8.6.
2. Vollath, D., Szabó, D.V., Schlabach, S., J. Nanoparticle Res. 6, 181191 (2004).
3. Dong, W., Zhu, C., J. Phys. Chem. Solids 64, 265271 (2003).
4. Musikhin, S., Bakueva, L., Sargabt, E.H., Shik, A., J. Appl. Phys. 91, 66796683 (2002).
5. Förster, T., in “Fluoreszenz organischer Verbindungen”, Vandenheock & Ruprecht, Göttingen (Germany), p. 97100 (1951).
6. Vollath, D., Lamparth, I., Szabó, D.V., Berg und Hüttenmännische Monatshefte (BHM ), 147, 350358 (2002).
7. Vollath, D., Lamparth, I., Wacker, F., German Patent Application DE 10203907.0 (2002).
8. Vollath, D., Szabó, D. V., in “Innovative Processing of Films and Nanocrystalline Powders” edited by Choy, K.-L., Imperials College Press, p. 210251 (2002).
9. Lakowicz, J.R., in “Principles of Fluorescence Spectroscopy”, Kluewer Academic / Plenum Publishers, New York, p. 238 (1999).
10. Worrall, D.R., Williams, S.L., Eremenko, A., Smirnova, N., Yakimenko, O., Starukh, G., Colloids and Surfaces A 230, 4555 (2004).
11. Kim, C.S., Oh, S. M., Kim, S., Cho, C.G., Macromol. Rapid Commun. 19, 191196 (1998).
12. Li, Q., Ai, D., Dai, X., Wang, J., Powder Technology 137, 3440 (2003).
13. Hamanoue, K., Nakayama, T., Ikenaga, K., Ibuki, K., J. Phys. Chem. 96, 1029710302 (1992).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed