Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-20T21:26:59.199Z Has data issue: false hasContentIssue false

Influence of Growth Temperature and Phosphine Flow on CuPt Type Ordering in InGaP Grown by Chemical Beam Epitaxy

Published online by Cambridge University Press:  10 February 2011

J. Bettini
Affiliation:
IFGW, UNICAMP- CP 6165, 13083-970, Campinas, SP, Brazil, bettini@ifi.unicamp.br
M.M.G. de Carvalho
Affiliation:
IFGW, UNICAMP- CP 6165, 13083-970, Campinas, SP, Brazil
M. A. Hayashi
Affiliation:
IFGW, UNICAMP- CP 6165, 13083-970, Campinas, SP, Brazil
L. P. Cardoso
Affiliation:
IFGW, UNICAMP- CP 6165, 13083-970, Campinas, SP, Brazil
D. Ugarte
Affiliation:
LME, LNLS/MCT, Campinas, SP, Brazil
Get access

Abstract

In this work, In0.5Ga0.5P layers were grown by Chemical Beam Epitaxy on GaAs (001) substrates. A set of samples was grown with temperatures kept in the range of 500°C to 560°C with V/III ratio 15. Another set was grown at 560°C with V/II ratio varied in the range 15 to 35. The evolution of ordering as function of growth temperature and V/III ratio was evaluated by photoluminescence measurements at 77K, Transmission Electron Diffraction (TED) and images using Transmission Electron Microscopy (TEM)-Dark Field. A 48meV reduction in the band gap energy was measured by photoluminescence measurements at 77 K when growth temperature was increased. This result is associated to the occurrence of CuPtB ordering in the InGaP layers observed by TED. The TEM-Dark field examination shows that the ordered domains are larger for samples grown at higher temperatures

A small reduction in band gap, from 1.915eV to 1.902eV, occurs when the V/III ratio is increased from 15 to 35. The TED patterns present diffuse scattering for all samples. For those grown with higher V/III ratio, spots are also observed. TEM-dark field images show that the ordered regions become larger, elongated and inclined; some of them exhibit long range ordering

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kish, F. A., Steranka, F. M., Defevere, D. C., Vandenwater, D. A., Park, K. G., Kuo, C. P., Ostenowshi, T. D., Peanaski, M. J., Yu, J. G., Fletcher, R. M., Steigerwald, D. A. and Craford, M. G., Appl. Phys. Lett. 64, 2839 (1994).Google Scholar
[2] Katamoto, T., Ikeda, E., Kurita, H., Aplly. Phys. Lett. 70 381 (1997).Google Scholar
[3] Chin, T. P., Shang, J. C. P., Woodall, J. M., Chen, W. L., Haddad, G. I., Parks, C., Ramdas, A. K., Vac, J.. Sci. Teechol. B 13, 750 (1995).Google Scholar
[4] Shirakashi, J., Azuma, T., Fukuchi, F., Konagai, M., Takahashi, K., J. Cryst. Growth 150, 585 (1995)Google Scholar
[5] Shahid, M. A. and Mahajan, S., Phys. Rev. B 38, 1344 (1988).Google Scholar
[6] Gomyo, A., Suzuki, T., Kobayashi, K., Kawata, S., Hino, I. and Yuasa, T., Appl. Phys. Lett. 50, 673 (1987).Google Scholar
[7] Kuan, T. S., Wang, W. I. and Wilkie, E. L., Appl. Phys. Lett. 51, 51 (1987).Google Scholar
[8] Su, L. C., Ho, I. H. and Stringfellow, G. B., J. Appl. Phys. 75, 5135 (1994).Google Scholar
[9] Su, L. C., Ho, I. H. and Stringfellow, G. B., J. Appl. Phys, 76, 3257 (1994).Google Scholar
[10] Wei, S. H. and Zunger, A., App. Phys. Lett. 56, 662 (1990).Google Scholar
[11] Homer, G. S., Mascarenhas, A., Alonso, R. G., Friedman, D. J., Sinha, K., Bertness, K. A., Zhu, J. G. and Olson, J. M., Phys Rev. B 48, 4944 (1993).Google Scholar
[12] Seong, T.-Y. et al. , J. Electr. Materials 27, 409 (1998).Google Scholar
[13] Su, L. C., Ho, I. H. and Stringfellow, G. B., J. Cryst Growth 146, 558 (1995).Google Scholar
[14] Murata, H., Ho, I. H. and Stringfellow, G. B., Appl. Phys Lett. 68, 2237 (1996).Google Scholar
[15] Gomyo, A., Suzuki, T. and Iijima, S.. Phys. Rev. Lett. 60, 2645 (1988).Google Scholar
[16] Ernest, P., Geng, C., Scholz, F. and Schweizer, H., Phys. Stat. Sol. (b) 193, 213 (1996).Google Scholar
[17] 5 Stringfellow, G. B. and Chen, G. S., J. Vac. Sci. Technol. B 9, 2182 (1991).Google Scholar
[18] Bellon, P., Chevalier, J. P., Augarde, E., Andr, J. P.6 and Martin, G. P., J. Appl. Phys. 66, 2388 (1989).Google Scholar
[19] Ernest, P., Geng, C., Hahn, G. Scholz, F. and Schweizer, H., J. Appl. Phys. 79, 2633 (1996).Google Scholar
[20] Delong, M. C., Mowbray, D.J., Hogg, R. A., Skonick, M. S., Willians, J. E., Meehan, K., Kurtz, S. R., Olson, J. M., Schneider, R. P., Wu, M. C., Hopkinson, M., Appl. Phys. Lett. 66, 3185 (1995).Google Scholar
[21] Baxter, C. S., Stobbs, W. M. and Wilkie, J. H., J. Cryst. Growth 112, 373 (1991).Google Scholar