Skip to main content Accessibility help
×
Home

Influence of Defect Post-deposition Treatments on poly-Si Thin-film Solar Cells on Glass grown by ECRCVD

  • Björn Rau (a1), Jens Schneider (a2), Erhard Conrad (a3) and Stefan Gall (a4)

Abstract

The epitaxial thickening of a thin polycrystalline Si (poly-Si) film (seed layer) is a promising approach to realize an absorber layer of a poly-Si thin-film solar cell on glass. Such cell concept combines the benefits of crystalline Si and the high potential for cost reduction of a thin-film technology. Here, we discuss the influence of post-deposition treatments on the properties of absorber layers grown by electron-cyclotron resonance chemical vapor deposition (ECRCVD) and the solar cell performance, respectively. After the absorber growth and prior to the emitter deposition, defect annealing was used to improve the structural quality of the absorber layers and to increase the doping efficiency. For this, we used rapid thermal annealing (RTA) processes as well as thermal annealing in a conventional quartz furnace. In order to avoid damaging of the glass, only short annealing times (up to 400 s) were applied at temperatures of up to 950 °C. Defect passivation treatments were carried out at temperatures of about 350 °C to passivate the remaining defects in the films by hydrogen. The impact of both treatments on the solar cell parameter will be discussed. Excellent VOC's of up to 361 mV were achieved without hydrogenation showing the high potential of ECRCVD-grown absorbers. Applying both treatments resulted so far in an increase of VOC of about 400 mV. Because of the fact, that both post-treatments (particularly hydrogenation) are still not yet optimized, further improvements can be expected.

Copyright

References

Hide All
1 Schwarzkopf, J., Selle, B., Bohne, W., Röhrich, J., Sieber, I., and Fuhs, W., J. Appl. Phys. 93 (2003) 5215.
2 Rau, B., Sieber, I., Schneider, J., Muske, M., Stöger-Pollach, M., Schattschneider, P., Gall, S., and Fuhs, W., J. Crystal Growth 270 (2004) 396.
3 Rau, B., Klein, J., Schneider, J., Conrad, E., Sieber, I., Stöger-Pollach, M., Schattschneider, P., Gall, S., and Fuhs, W., Proceedings of 20th European Photovoltaic Solar Energy Conference, Barcelona 2005, p. 1067.
4 Cubaynes, F.N., Stolk, P.A., Verhoeven, J., Roozeboom, F., and Woerlee, P.H., Materials Science in Semiconductor Processing 4 (2001) 351
5 Terry, M., Straub, A., Inns, D., Song, D., and Aberle, A., Conference record of 31st IEEE, Orlando, 2005, p. 971.
6 Gall, S., Muske, M., Sieber, I., Nast, O., and Fuhs, W., J. Non-Cryst. Solids 299–302 (2002) 741.
7 Sinton, R.A. and Cuevas, A., Proceedings of 16th European Photovoltaic Solar Energy Conference, Glasgow 2000, p. 1152.
8 Rau, B., Schneider, J., Conrad, E., Gall, S., and Fuhs, W., Technical Digest of PVSEC-15, Shanghai, 2005, p. 778.

Keywords

Influence of Defect Post-deposition Treatments on poly-Si Thin-film Solar Cells on Glass grown by ECRCVD

  • Björn Rau (a1), Jens Schneider (a2), Erhard Conrad (a3) and Stefan Gall (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed