Skip to main content Accessibility help
×
Home

Influence of Average Free Volume Element Size on the Transport of Gases Through Polymers With Equivalent Total Free Volumes

  • Broderick R. Wilks (a1), Won J. Chung (a1), Peter J. Ludovice (a1), Mary E. Rezac (a2), Pavla Meakin (a3) and Anita J. Hill (a3)...

Abstract

The permeability coefficients of gases through glassy polymers have been correlated with the fractional free volume (FFV) of the polymers. In general, polymers with high fractional free volumes have high permeabilities while those with low FFV have low permeabilities. This observation is valid for many, but not all materials. This study evaluates the impact of the average size of a free volume element on the permeability of gases through the polymer.

Evaluation of the influence of average free volume element size is only possible by employing model systems in which the chemistry and the total free volume are essentially equivalent. In this study, two stereochemical forms of a methyl-substituted polynorbornene were employed. The isomers are chemically equivalent, with similar total free volumes (0.181 versus 0.188). The average defect size was probed using positron annihilation lifetime spectroscopy. The ortho-positronium lifetimes were measured and it was determined that the difference between the two isomers was approximately 10% with the lower-FFV isomer having the larger average lifetime. For simplicity, the two isomers will be termed Pd and Ni (in reference to the catalysts used in their preparation). The Pd isomer has a slightly lower FFV, but larger average defect size. The Ni isomer has a higher FFV, but smaller average defect size.

Transport evaluation indicates that the Pd-isomer has gas permeabilities two to three times those of the Ni-isomer. In depth analysis indicates that the increase in permeability is a result of an increase in both the diffusivity of gases through the polymer and gas solubility.

Copyright

References

Hide All
1. Meredith, J.; Karim, A.; Amis, E. MRS Bulletin 2002, 27 4: 330 - 335.
2. Zimmerman, C. M.; Singh, A.; Koros, W. J. Journal of Membrane Science 1997, 137: 145154.
3. Park, J. Y.; Paul, D. R. Journal of Membrane Science 1997, 125: 2339.
4. Koros, W. J.; Coleman, M. R.; Walker, D. R. B. Annual Review of Material Science 1992, 22: 4789.
5. Goodall, B. L.; Benedikt, G. M.; Mcintosh, L. H. III; Barnes, D. A.; Medina, D. A., Process for Making Polymers Containing a Norbornene Repeating Unit by Addition Polymerization using an Organo (Nickel or Palladium) Complex. 1995, 5, 468, 819: U. S. Patent.
6. Goodall, B. L.; Benedikt, G. M.; Mcintosh-III, L. H.; Barnes, D. A.; Rhodes, L. F., Addition Polymers Derived from Norbornene-Functional Monomers and Process Therefor. 1996, 5, 571, 881: U. S. Patent.
7. Ahmed, S.; Bidstrup, S. A.; Kohl, P.; Ludovice, P. J. Makromol Chem, Macromol Symp 1998, 133: 110.
8. Ahmed, S.; Kohl, P.; Ludovice, P. J. J Comp and Theor Polym Sci 2000, 10: 221233.
9. Barnes, D. A.; Benedikt, G. M.; Goodall, B. L.; Huang, S.; Kalamarides, H. A.; Lenhard, S.; McIntosh, L. H. III; Selvy, K. T.; Shick, R. A.; Rhodes, L. F. J Amer Chem Soc submitted.
10. Barnes, D. A.; Benedikt, G. M.; Goodall, B. L.; McIntosh, L. H. III; Shick, R. A.; Rhodes, L. F. J Amer Chem Soc submitted.
11. Walker, D. R. B.; Koros, W. J. Journal of Membrane Science 1991, 55: 99117.
12. Kim, T. H.; Koros, W. J.; Husk, G. R.; O'brien, K. C. Journal of Membrane Science 1988, 37: 4562.
13. Stern, S. A.; Mi, Y.; Yamamoto, H. Journal of Polymer Science: Polymer Physics 1989, 27: 18871909.
14. Coleman, M. R.; Koros, W. J. Journal of Polymer Science: Polymer Physics 1994, 32: 19151926.
15. Yamamoto, H.; Mi, Y.; Stern, S. A. Journal of Polymer Science: Polymer Physics 1990, 28: 22912304.
16. Stern, S. A.; Liu, Y.; Feld, W. A. Journal of Polymer Science: Polymer Physics 1993, 31: 939951.
17. Langsam, M.; Burgoyne, W. F. Journal of Polymer Science: Polymer Chemistry 1993, 31: 909921.
18. McHattie, J. S.; Koros, W. J.; Paul, D. R. Polymer 1991, 32: 840850.
19. Aitken, C. L.; Koros, W. J.; Paul, D. R. Macromolecules 1992, 25: 36513658.
20. Bixler, H. J.; Sweeting, O. J., Barrier Properties of Polymer Films, in The Science and Technology of Polymer Films, Sweeting, O. J., Editor. 1971, Wiley-Interscience: New York. p. 1130.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed