Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T01:13:36.762Z Has data issue: false hasContentIssue false

Inflimne of Dopant type and Conceintrtion on Hydrogen Diffusion in Silicon

Published online by Cambridge University Press:  28 February 2011

Jeffrey T. Borenstein
Affiliation:
Mobil Solar Energy Corporation, 4 Suburban Park Drive, Billerica MA 01821
David Angell
Affiliation:
Physics Department, SUNY at Albany, Albany NY 12222
James W. Corbett
Affiliation:
Physics Department, SUNY at Albany, Albany NY 12222
Get access

Abstract

We present a kinetic model for hydrogen diffusion and deactivation of shallow dopants incrystalline silicon which accounts for some of the effects of dopant type and concentration on observed deuterium profiles. The predictions of this model are in accord with recent Secondary Ion Mass Spectrometry (SIMS) profiles of deuterium in both n— and p—type silicon for a range of resistivities after passivation in a deuterium plasma. Dopant type and concentration effects are explained by assuming the presence of a charged species and by allowing for the formation of immobile deuterium molecules. The deuterium profiles are controlled by chargestate—mediated reactions which form deuterium molecules and pairs with shallow donors or acceptors. Earlier research has found that the hydrogen interstitial in silicon has a deep donor state in the band gap. The observed behavior of the deuterium profiles implies that the Fermi level passes through this donor state for a resistivity between 1 and 10 Q—cm in boron—doped material at 125 ºC; i.e. the state is at Ev + 0.30 ± 0.10 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pearton, S.J., Corbett, J.W. and Shi, T.S., Appl. Phys. A 43, 153 (1987).Google Scholar
2. Corbett, J.W., J.L. Lindstrbm, Snyder, L.C. and Pearton, S.J., in Defects in Electronic Materials, edited by Stavola, M., Pearton, S.J. and Daies, G. (Mater. Res. Soc. Proc. 104, Pittsburgh, 1988), p. 229.Google Scholar
3. Seager, C.H., Anderson, R.A. and Panitz, J.K.G., J. Mater. Res. 2, 96 (1987).CrossRefGoogle Scholar
4. Pankove, J.I., Carlson, D.E., Berkeyheiser, J.E. and Wance, R.O., Phys. Rev. Lett. 51, 2224 (1983).Google Scholar
5. Hansen, W.L., Pearton, S.J. and Haller, E.E., Appl. Phys. Lett. 44, 889 (1984).CrossRefGoogle Scholar
6. Johnson, N.M., Herring, C. and Chadi, D.J., Phys. Rev. Lett. 56, 769 (1986).Google Scholar
7. Johnson, N.M., Appl. Phys. Lett. 47, 874 (1985).CrossRefGoogle Scholar
8. Tavendale, A.J., Alexiev, D. and Williams, A.A., Appl. Phys. Lett. 47, 317 (1985).CrossRefGoogle Scholar
9. Seager, C.H. and Anderson, R.A., Appl. Phys. Lett. 53, 1181 (1988).Google Scholar
10. Corbett, J.W., Lindström, J.L., Pearton, S.J. and Tavendale, A.T., Solar Cells 24, 127 (1988).Google Scholar
11. Wieringen, A. Van and Warmoltz, N., Physica 22, 849 (1956).CrossRefGoogle Scholar
12. Ichimaya, T. and Furuichi, A., Int. J. Appl.-ad. Isotopes 19, 573 (1968).Google Scholar
13. Johnson, N.M., Biegelsen, D.K. and Moyer, M.D., Appl. Phys. Lett. 40, 882 (1982).Google Scholar
14. Corbett, J.W., Peak, D., Pearton, S.J. and Sganga, A.G., in Hydrogen in Disordered and Amorphous Solids, edited by Bambakidis, G. and Bowman, R.C. Jr, (Plenum, New York, 1986), p. 61.Google Scholar
15. Hall, R.N., IEEE Trans. Nucl. Sci. NS–31, 320 (1984).Google Scholar
16. Shi, T.S., Sahu, S.N., Corbett, J.W. and Snyder, L.C., Scientica Sinica 27, 98 (1984).Google Scholar
17. Mainwood, A. and Stoneham, A.M., Physica 116B, 101 (1983).Google Scholar
18. Capizzi, M. and Mittiga, A., Appl Phys. Lett. 50, 918 (1987).Google Scholar
19. Capizzi, M. and Mittiga, A., Physica 146B, 19 (1987).Google Scholar
20. Pantelides, S.T., Appl. Phys. Lett. 50, 995 (1987).CrossRefGoogle Scholar
21. Seager, C.H. and Anderson, R.A., these proceedings.Google Scholar
22. Singh, V.A., Weigel, C., Corbett, J.W. and Roth, L.M., Phys. Stat. Sol. 81b, 637 (1977).Google Scholar
23. Reiss, H., J. Appl. Phys. 30, 1141 (1959).Google Scholar