Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T11:50:09.809Z Has data issue: false hasContentIssue false

Increasing Energy Storage in Activated Carbon based Electrical Double Layer Capacitors through Plasma Processing

Published online by Cambridge University Press:  09 June 2015

Marcelis L. Muriel
Affiliation:
Program in Materials Science, University of California, San Diego, La Jolla, CA 920393, U.S.A.
Rajaram Narayanan
Affiliation:
Department of Nanoengineering, University of California, San Diego, La Jolla, CA 920393, U.S.A.
Prabhakar R. Bandaru
Affiliation:
Program in Materials Science, University of California, San Diego, La Jolla, CA 920393, U.S.A. Department of Nanoengineering, University of California, San Diego, La Jolla, CA 920393, U.S.A. Department of Mechanical & Aerospace Engineering, University of California, San Diego, La Jolla, CA 920393, U.S.A.
Get access

Abstract

We present a methodology to enhance the electrical capacitance of activated carbon (AC) electrodes based on the introduction of electrically charged defects through argon plasma processing. Extensive characterization using electrochemical techniques incorporating cyclic voltammetry, constant current charge/discharge, and electrical impedance spectroscopy indicated a close to seven-fold increase in capacitance with respect to untreated AC electrodes, not subject to plasma processing.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., & Taberna, P. L. (2006). Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 313(5794), 17601763.CrossRefGoogle ScholarPubMed
Karakaya, M., Zhu, J., Raghavendra, A. J., Podila, R., Parler, S. G. Jr, Kaplan, J. P., & Rao, A. M. (2014). Roll-to-roll production of spray coated N-doped carbon nanotube electrodes for supercapacitors. Applied Physics Letters,105(26), 263103.CrossRefGoogle Scholar
Okajima, K., Ohta, K., & Sudoh, M. (2005). Capacitance behavior of activated carbon fibers with oxygen-plasma treatment. Electrochimica Acta, 50(11), 22272231.CrossRefGoogle Scholar
Hoefer, M., & Bandaru, P. (2013). Electrochemical Characteristics of Closely Spaced Defect Tuned Carbon Nanotube Arrays. Journal of The Electrochemical Society, 160(6), H360H367.CrossRefGoogle Scholar
Narayanan, R., Yamada, H., Karakaya, M., Podila, R., Rao, A. M., & Bandaru, P. R. (2015). Modulation of the electrostatic and quantum capacitances of few layered graphenes through plasma processing. Nano letters. DOI: 10.1021/acs.nanolett.5b00055.CrossRefGoogle ScholarPubMed
Xu, G., Zheng, C., Zhang, Q., Huang, J., Zhao, M., Nie, J.,... & Wei, F. (2011). Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Research, 4(9), 870881.CrossRefGoogle Scholar
Stoller, M. D., & Ruoff, R. S. (2010). Best practice methods for determining an electrode material's performance for ultracapacitors. Energy & Environmental Science, 3(9), 12941301.CrossRefGoogle Scholar
Conway, B. E. (1999). Electrochemical supercapacitors. 53 – 57, 486 – 496.Google Scholar
Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: principles and applications. Electrochemical Methods: Principles and Applications. 386428.Google Scholar