Skip to main content Accessibility help
×
Home

Increased Ordering in the Amorphous SiOx due to Hyperthermal Atomic Oxygen.

  • Maja Kisa (a1), William G. Stratton (a2), Timothy K. Minton (a3), Klaus van Benthem (a4), Steve J. Pennycook (a4), Paul M. Voyles (a2), Xidong Chen (a5), Long Li (a6) and Judith C. Yang (a6)...

Abstract

We had studied the effects of hyperthermal (5.1eV) atomic oxygen (AO) on the structural characteristics of the silica layer and Si/SiOx interface formed by the oxidation of Si-single crystal by a variety of microcharacterization techniques. A laser detonation source was used to produce atomic oxygen with 5.1eV kinetic energy. High Resolution Transmission Electron Microscopy (HRTEM) and Selected Area Electron Diffraction (SAED) demonstrated that the silica layer formed on Si(100) by atomic oxygen is thicker, more homogeneous, and less amorphous, compared to the oxide layer created by molecular oxygen (MO). High spatial resolution Electron Energy Loss Spectroscopy (EELS) study confirmed that the Si/SiOx interface created by atomic oxygen is abrupt containing no suboxides as opposed to the broad interface with transitional states formed by molecular oxygen. SAED technique was used to observe sharper diffraction rings present in the diffraction pattern of Si(100) oxidized by reactive atomic oxygen as opposed to the diffused haloes present in the diffraction pattern of Si(100) oxidized by molecular oxygen. Radial Distribution Function (RDF) analyses were performed on the SAED patterns of Si(100) oxidized in atomic and molecular oxygen, indicating that a more ordered oxide is formed by atomic oxygen. Initial Fluctuation Electron Microscopy (FEM) results confirmed an increased medium range ordering in SiOx formed by atomic oxygen when compared to the non-regular arrangement present in the amorphous oxide formed by the oxidation of Si(100) in molecular oxygen.

Copyright

References

Hide All
1. Minton, T. K. and Garton, D. J., Chemical Dynamics in Extreme Environments: Advanced Series in Physical Chemistry – Vol. 11, Edited by Dressler, R. (World Scientific, Singapore, 2001), 420489.
2. Chambers, A.R., Harris, I.L. and Roberts, G.T., Materials Letters 26, 121131 (1996).
3. Banks, B., Rutledge, S. and Auer, B., 119th TMS Annual Meeting and Exhibit, Anaheim, February 18–22 (1990).
4. Banks, B., Rutledge, S., de Groh, K. and Auer, B., NATO advanced study institute conference Pitlochry, Scotland, July 7–19 (1991).
5. Randjelovic, M. and Yang, J. C., Materials at High Temperatures, 20(3), 281285 (2003).
6. Caledonia, G.E., Krech, R.H. and Green, B.D., AIAA J, 25, 5963 (1987).
7. Oakes, D.B., Krech, R.H., Upschuete, B.L. and Caledonia, G.E., J. Appl. Phys. 77, 21662172 (1995).
8. Treacy, M.M.J. and Gibson, J.M., Acta Cryst. A, 52(2): 212220. (1996).
9. Kisa, M., Minton, T. K., and Yang, J. C., J. Appl. Phys., accepted to be published in January 2005.
10. Kisa, M., Twesten, R. D. and Yang, J. C., Mat. Res. Symp. Proc. 786, 267272 (2004).
11. Garvie, L.A.J. and Buseck, P.R., American Mineralogist, 84, 946964, (1999).
12. PCPDF files
13. Tagawa, M., Ema, T., Kinoshita, H., Ohmae, N., Umeno, M., and Minton, T. K., Jpn. J. Appl. Phys. 37, L1455-L1457 (1998).
14. Elliot, S. R.Physics of Amorphous Materials”, Longman (1983).
15. Voyles, P.M., Gibson, J.M., and Treacy, M.M.J., J. Electron Microsc. 49, 259266. (2000).
16. Voyles, P.M. and Abelson, J.R., National Renewable Energy Laboratory- Final Report, October 2003.
17. Tagawa, M., Yokota, K., Ohmae, N. and Kinoshita, H., High Perform. Polym. 12, 5363 (2000).
18. Tagawa, M., Yokota, K., Ohmae, N., Kinoshita, H. and Umeno, M., Jpn. J. Appl. Phys, 40, 61526156 (2001).
19. Engstrom, J.R., Nelson, M.M. and Engel, T., J. Vac. Sci. Technol. A7(3), 18371840 (1989).
20. Engstrom, J.R. and Engel, T., Phys. Rev. B, 41(2), 10381042 (1990).
21. Irene, E., Appl. Phys. Lett. 51(10), 767769 (1987).
22. Ichimura, S., Kurokawa, A., Nakamura, K., Itoh, H., Nonaka, H. and Koike, K., Thin Solid Films, 377–378, 518524 (2000).
23. Itoh, H., Nakamura, K., Kurokawa, A. and Ichimura, S., Surface Science, 482–485, 114120 (2001).
24. Watanabe, H., Kato, K., Uda, T., Fujita, K. and Ichikawa, M., Phys. Rev. Lett, 80, 345 (1998).
25. Kuznetsova, A., Zhou, G., Chen, X., Yang, J., and Yates, J. T. Jr, Langmuir 17, 2146 (2001).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed