Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T01:08:03.232Z Has data issue: false hasContentIssue false

Increase in Schottky Barrier Height in the CoSi2/Si (100) Interface Caused by Hydrogen

Published online by Cambridge University Press:  25 February 2011

A. D. Marwick
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598.
M. O. Aboelfotoh
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598.
R. Casparis
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598.
Get access

Abstract

It is shown that the presence of 8 × 1015 hydrogen atoms/cm2 in the CoSi2/Si (100) interface causes an increase in the Schottky barrier height of 120 meV, and that passivation of dopants in the substrate is not the cause of this change. The data is evidence that the position of the Fermi level in this interface is controlled by defect-related interface states. After hydrogenation the Schottky barrier height agrees with that predicted by theory for Fermi level pinning by virtual gap states of the silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Heine, V., Phys. Rev. 138, A1689 (1965).Google Scholar
[2] Tersoff, J., Phys. Rev. Lett. 52, 465 (1984).Google Scholar
[3] Mönch, W., Phys. Rev. Lett. 58, 1260 (1987).Google Scholar
[4] Jia, Y. Q. and Qin, G. G., Appl. Phys. Lett. 56, 641 (1990).Google Scholar
[5] Aboelfotoh, M. O., Marwick, A. D., and Casparis, R., (1992). To be publishedGoogle Scholar
[6] Services, C. G.. 221 Asbury Road, Lansing, NY 14882Google Scholar
[7] Marwick, A. D., Liu, J. C., Krakow, W., and Thompson, R. D., Mat. Res. Soc. Symp. Proc. 238, 413 (1992).Google Scholar
[8] Liu, J. C., Marwick, A. D., and Legoues, F. K., Phys. Rev. B 44, 1861 (1991).Google Scholar
[9] Sze, S. M., Physics of Semiconductor Devices (Wiley, New York, 1981).Google Scholar
[10] Sankey, O. F., Allen, R. E., and Dow, J. D., Solid State Commun. 49, 1 (1984).Google Scholar
[11] Duboz, J. Y., Badoz, P. A., d'Avitaya, F. A., and Rosencher, E., Phys. Rev. B 40, 10607 (1989).Google Scholar
[12] Loretto, D., Gibson, J. M., and Yalisove, S. M., Phys. Rev. Lett. 63, 298 (1989).Google Scholar
[13] Tsaur, B., Mattia, J., and Chen, C. K., Appl. Phys. Lett. 57, 1111 (1990).Google Scholar
[14] Chantre, A., Levi, A. F. J., Tung, R. T., Dautremont-Smith, W. C., and Anzlowar, M., Phys. Rev. B 34, 4415 (1986).Google Scholar
[15] Gunnarsson, O., Hjelmberg, H., and Lundqvist, B., Surf. Sci. 63, 348 (1977).Google Scholar