Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-19T02:31:45.235Z Has data issue: false hasContentIssue false

Increase in Period of Oscillatory Coupling in Cu by Doping with Ni

Published online by Cambridge University Press:  03 September 2012

S.S.P. Parkin
Affiliation:
IBM Research Division, Almadén Research Center, 650 Harry Road, San Jose, C A 95120–6099.
C Chappertt
Affiliation:
Institut d'Rlectroniquc Fondamentale, Université Paris-Sud, Orsay, France.
F. Herman
Affiliation:
IBM Research Division, Almadén Research Center, 650 Harry Road, San Jose, C A 95120–6099.
Get access

Abstract

The origin of oscillatory interlayer coupling via Cu is explored in sputtered Co/Cu Multilayers by varying the hole concentration in the copper layers by doping with elements of different valence. Detailed studies were carried out for a series of Cu-Ni alloys. The oscillation period of pure Cu is observed to increase monotonically with increasing Ni concentration and is almost doubled for 40 atomic % Ni. The increase in oscillation period can be accounted for by considering changes in the topology of (he Fermi surface of the alloy resulting from the change in band Tilling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Griinberg, P., Schreiber, R., Pang, Y., Brodsky, M.B. and Sowers, I.I., Phys. Rev. Lett. 57, 2442 (1986).Google Scholar
[2] Parkin, S.S.P., More, N. and Roche, K.P., Phys. Rev. Lett. 64, 2304 (1990).Google Scholar
[3] Parkin, S.S.P., Bhadra, R. and Roche, K.P., Phys. Rev. Lett. 66. 2152 (1991).Google Scholar
[4] Parkin, S.S.P., Phys. Rev. Lett. 67, 3598 (1991).Google Scholar
[5] Purccll, S.T., Purcell, S.T., Folkerls, W., Johnson, M.T., McGce, N.W.E., Jager, K., aan de Stegge, J., Zeper, W.B., Hoving, W., and Griinberg, P., Phys. Rev. Lett. 67, 903 (1991).Google Scholar
[6] Demokritov, S., Wolf, J.A. and Grünberg, P., Euro. Phys. Lett. (5, 881 (1991).Google Scholar
[7] Unguris, J., Celotta, R.J. and Pierce, D.T., Phys. Rev. Lett. 67, 140 (1991).Google Scholar
[8] Fuss, A., Demokritov, S., Grünberg, P. and Zinn, W., J. Mag. Mag. Mat. 103, L221 (1992).Google Scholar
[9] Johnson, M.T., Coehoorn, R., de Vries, J.J., McGee, N.W.E., aan de Stegge, J., and Bloemen, P.J.H., Phys. Rev. Lett. 69, 969 (1992).Google Scholar
[10] Kittel, C., in Solid State Physics, edited by Seitz, F., Turnbull, D. and Ehrenreich, H. (Academic Press, 1968) Vol. 22, p. 1.Google Scholar
[11] Yafet, Y., Phys. Rev. B 36, 3948 (1987).Google Scholar
[12] Bruno, P. and Chappert, C., Phys. Rev. Lett. 67, 1602 (1991).Google Scholar
[13] Bruno, P. and Chappert, C., Phys. Rev. B 46, 261 (1992).Google Scholar
[14] Bennett, W.R., Schwarzacher, W. and Egel hoff, W.F., Phys. Rev. Lett. 65, 3169 (1990).Google Scholar
[15] Cebollada, A., Miranda, R., Schneider, C.M., Schuster, P. and Kirschncr, J.. J. Mag. Mag. Mat. 102, 25 (1991).Google Scholar
[16] Johnson, M.T., Purcell, S.T., McGee, N.W.E., Coehoorn, R., aan de Stegge, J.. and Hoving, W., Phys. Rev. Lett. 68, 2688 (1992).Google Scholar
[17] Parkin, S.S.P., Li, Z.G. and Smith, D.J., Appl. Phys. Lett. 58. 2710 (1991).Google Scholar
[18] Robbins, C.G., Claus, H. and Beck, P.A., Phys. Rev. Lett. 22, 1307 (1969).Google Scholar
[19] White, R.M., Quantum Theory of Magnetism (Spingor Verlag, 1983)Google Scholar
[20] Gordon, B., Temmerman, W.M., Gyorl'fy, B.L., Stocks, G.M., in Transition Metals- 1977, (Institute of Physics, 1978) Vol. 39, p. 402.Google Scholar
[21] Papaconstantopoulos, D.A., Handbook of the Rand Structure of Elemental Solids (Plenum Press, 1986)Google Scholar
[22] Nakao, Y. and Wakoh, S., J. Phys. Soc. Jap. 56, 3983 (1987).Google Scholar
[23] Halse, M.R., Phil. Trans. Roy. Soc. A 265, 507 (1969).Google Scholar