Skip to main content Accessibility help

Incorporation of Colloidal PbSe Quantum Dots into 2-D Photonic Crystal Structures

  • Yun-Ju Lee (a1), Ganapathi Subramania (a2), Bernadette A. Hernandez-Sanchez (a3), Michael K. Niehaus (a4), Timothy J. Boyle (a5), Joseph Cesarano (a6) and Paul G. Clem (a7)...


We demonstrate the functionalization of 2-D photonic crystal structures operating at ∼ 1.5 μm with colloidal PbSe quantum dots and examine the modified photoluminescence from the functionalized photonic crystal. Using spin coating and airbrushing, monodisperse PbSe quantum dots were deposited from hexanes on lithographically patterned GaAs photonic crystal substrates. The effectiveness of patterning the PbSe quantum dots via standard liftoff process was examined. The near-IR photoluminescence spectra of quantum dot-functionalized photonic crystals were studied. We found that the photoluminescence peak became attenuated by approximately a factor of five and exhibited a narrow peak width (50 nm vs. 120 nm) compared to PbSe deposited on unpatterned GaAs, suggesting that there is some coupling between the quantum dots and the photonic crystal. Future work to improve the coupling and detection efficiency is proposed.



Hide All
1 Reithmaier, J. P., Sek, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L. V., Kulakovskii, V. D., Reinecke, T. L. and Forchel, A., Nature 432, 197 (2004).
2 Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H. M., Rupper, G., Ell, C., Shchekin, O. B. and Deppe, D. G., Nature 432, 200 (2004).
3 Happ, T. D., Tartakovskii, I. I., Kulakovskii, V. D., Reithmaier, J. P., Kamp, M., and Forchel, A., Phys. Rev. B 66, 041303 (2002).
4 Englund, D., Fattal, D., Waks, E., Solomon, G., Zhang, B., Nakaoka, T., Arakawa, Y., Yamamoto, Y. and Vuèkoviæ, J., Phys. Rev. Lett. 95, 013904 (2005).
5 Yablonovitch, E., J. Opt. Soc. Am. B 10, 293 (1993).
6 Loncar, M., Yoshie, T., Scherer, A., Gogna, P. and Qiu, Y., Appl. Phys. Lett. 81, 2680 (2002).
7 Brokmann, X., Giacobino, E., Dahan, M. and Hermier, J. P., Appl. Phys. Lett. 85, 712 (2004).
8 Chan, W. C. W., Maxwell, D. J., Gao, X., Bailey, R. E., Han, M. and Nie, S., Curr. Opin. Biotech. 13, 40 (2002).
9 Fushman, I., Englund, D. and Vuèkoviæ, J., Appl. Phys. Lett. 87, 241102 (2005).
10 Yu, W. W., Falkner, J. C., Shih, B. S. and Colvin, V. L., Chem. Mater. 16, 3318 (2004).
11 Cesarano, J., Segalman, R. and Calvert, P., Ceram. Ind. 148, 94 (1998).
12 Smay, J. E., Cesarano, J. III and Lewis, J. A., Langmuir 18, 5429 (2002).
13 Lin, S. Y., Chow, E., Johnson, S. G. and Joannopoulos, J. D., Opt. Lett. 26, 1903 (2001).
14 Chow, E., Lin, S. Y., Johnson, S. G., Villeneuve, P. R., Joannopolous, J. D., Wendt, J. R., Vawter, G. A., Zubrzycki, W., Hou, H., and Allerman, A., Nature 407, 983 (2000).
15 Subramania, G., Lin, S. Y., Wendt, J. R. and Rivera, J. M, Appl. Phys. Lett. 83, 4491 (2003).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed