Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-26T11:10:15.310Z Has data issue: false hasContentIssue false

Incomplete Solubility in Nitride Alloys

Published online by Cambridge University Press:  10 February 2011

I. H. Ho
Affiliation:
Department of Materials Science and Engineering University of Utah, Salt Lake City, Utah 84112.
G.B. Stringfellow
Affiliation:
Department of Materials Science and Engineering University of Utah, Salt Lake City, Utah 84112.
Get access

Abstract

A model based on the valence-force-field (VFF) model has been developed specifically for the calculation of the irascibility gaps in III-V nitride alloys. In the dilute limit, this model allows the relaxation of the atoms on both sublattices. It was found that the energy due to bond stretching and bond bending was lowered and the solubility limit was increased substantially when both sublattices were allowed to relax to distances as large as the sixth nearest neighbor positions. Using this model, the equilibrium mole fraction of N in GaP was calculated to be 6×l0−7 at 700°C. This is slightly higher than the calculated results from the semi-empirical delta lattice parameter (DLP) model. Both the temperature dependence and the absolute values of the calculated solubility agree closely with the experimental data. The solubility is more than three orders of magnitude larger than the result obtained using the VFF model with the group V atom positions given by the virtual crystal approximation, i.e., with relaxation of only the first neighbor bonds. Other nitride systems, such as GaAsN, AlPN, AlAsN, InPN, and InAsN were investigated as well. The equilibrium mole fractions of nitrogen in InP and InAs are the highest, which agrees well with recent experimental data where high N concentrations have been produced in InAsN alloys. Calculations were also performed for the alloy systems with mixing on the group III sublattice that are so important for device applications. Allowing relaxation to the 3rd nearest neighbor gives an In solubility in GaN at 800°C of less than 6%. Again, this is in agreement with the results of the DLP model calculation. This result may partially explain the difficulties experienced with the growth of these alloys. Indeed, evidence of solid immiscibility has recently been reported. A significant miscibility gap was also calculated for the AlInN system, but the AlGaN system is completely miscible.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, S., Jpn. J. Appl. Phys. 34, L798 (1995).Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Masushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35 L74 (1996).Google Scholar
3. Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, S., Jpn. J. Appl. Phys. 34 L797 (1995).Google Scholar
4. Redwing, M., Tischler, M.A., Flynn, J.S., Elhamri, S., Ahoujja, M., Newrock, R.S., and Mitchel, W.C., Appl. Phys. Lett. 69 963 (1996).Google Scholar
5. Matsuoka, T., Yoshimoto, N., Sasaki, T., and Katsui, A., J. Electron. Mater. 21 157 (1992).Google Scholar
6. Shimizu, M., Hiramatsu, K., and Sawaki, N., J. Cryst. Growth 145 209 (1994).Google Scholar
7. Osamura, K., Naka, S., and Murakami, Y., J. Appl. Phys. 46 3432 (1975).Google Scholar
8. Funato, M. (private communication).Google Scholar
9. Singh, R. and Moustakas, T.D., Mat. Res. Soc. Proc. Vol. 395, 163 (1996); R. Singh and T.D. Moustakas, Electrochemical Society Proceedings, Vol. 96-11, 186 (1996).Google Scholar
10. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Masushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35 L74 (1996).Google Scholar
11. Stringfellow, G. B., J. Electrochem. Soc. 119 1780 (1972).Google Scholar
12. Stringfellow, G. B., J. Crystal Growth 27 21 (1974).Google Scholar
13. Karpinski, J., Jun, J., Grzegory, I., and Bugajski, M., J. Cryst. Growth 72 711 (1985).Google Scholar
14. Stringfellow, G. B., “Organometallic Vapor-phase Epitaxy: Theory and Practice” (Academic press, New York, 1989) Chapter 3.Google Scholar
15. Bi, W.G. and Tu, C. W., Materials Research Society Fall Meeting, December 1996, Paper N3.41.Google Scholar
16. Kondow, M., Uomi, K., Hosomi, K. and Mozume, T.. Jpn. J. Appl. Phys. 33 L1056 (1994).Google Scholar
17. Weyers, M. and Sato, M., Appl. Phys. Lett. 62 1396 (1993).Google Scholar
18. Weyers, M.. Sato, M. and Ando, H., Jpn. J. Appl. Phys. 31 L853 (1993).Google Scholar
19. Foxon, C. T., Cheng, T. S., Novikov, S. V., Lacklison, D. E., Jenkins, L. C., Johnston, D., Orton, J. W., Hooper, S. E., Baba-Ali, N., Tansley, T. L., Tretyakov, V. V., J. Cryst. Growth 150 892 (1995); S. V. Novikov, C. T. Foxon, T. S. Cheng, T. L. Tansley, J. W. Orton, D. E. Lacklison, D. Johnston, N. Baba-Ali, S. E. Hooper, L. C. Jenkins, L. Eaves, J. Cryst. Growth 146 340 (1995).Google Scholar
20. Keating, P. N., Phys. Rev. 145 637 (1966).Google Scholar
21. Phillips, J. C. and Van Vechten, J. A., Phys. Rev. B 2 2147 (1970).Google Scholar
22. Phillips, J. C., Phys. Rev. Lett. 20 550 (1968).Google Scholar
23. Ichimura, M., and Sasaki, A., J. Appl. Phys. 60 3850 (1986).Google Scholar
24. Schabel, M.C. and Martins, J.L., Phys. Rev. B 43, 11873 (1991).Google Scholar
25. Chandrasekhar, D., Smith, D. J., Strite, S., Lin, M. E., and Morkoc, H., J. Crystal Growth 152 135 (1995).Google Scholar
26. Morgan, T. N. and Maier, M., Phys. Rev. Lett. 27 1200 (1971).Google Scholar
27. Martin, R. M., Phys. Rev. B 1 4005 (1970).Google Scholar
28. Phillips, J. C., “Bonds and Bands in Semiconductors” (Academic Press, New York, 1973) p. 42 Google Scholar
29. Kim, K., Lambrecht, W.R.L., and Segall, B., Phys. Rev. B 53, 16310 (1996).Google Scholar
30. Thierry-Mieg, V., Marbeuf, A, Chevallier, J., Mariette, H.. Bugajski, M., and Kazmierski, K., J. Appl. Phys. 54 5358 (1983).Google Scholar
31. Hayes, T. J., Mottram, A., and Peaker, A. R., J. Cryst. Growth 45 59 (1978).Google Scholar
32. Strite, S. and Morkoc, H., J. Vac. Sci. Tech. B 10, 1237 (1992).Google Scholar
33. Martins, J.L. and Zunger, A., Phys. Rev. B 30, 6217 (1984).Google Scholar
34. Kao, Y. C., Broekaert, T. P. E., Lin, H. Y., Tang, S., Ho, I. H., and Stringfellow, G. B., Paper El2.4, Presented at the Spring MRS Meeting, April, 1996, San Francisco, CA.Google Scholar
35. Bi, W.G. and Tu, C.W., J. Appl. Phys. 80, 1934 (1996).Google Scholar