Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T00:04:28.852Z Has data issue: false hasContentIssue false

In situ X-ray Studies of (La,Sr)MnO3_δ, (La,Sr)CoO3_δ, and La0.6Sr0.4Co0.2Fe0.8O3-δ Thin Film SOFC Cathodes Grown by Pulse Laser Deposition

Published online by Cambridge University Press:  15 January 2013

Kee-Chul Chang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439USA
Brian Ingram
Affiliation:
Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439USA
Paul Salvador
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213USA
Bilge Yildiz
Affiliation:
Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Hoydoo You
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439USA
Get access

Abstract

We will briefly review in situ synchrotron x-ray investigation of model thin film cathode systems for solid oxide fuel cells. The film cathodes examined in this study are (La,Sr)MnO3_δ (LSM), (La,Sr)CoO3_δ (LSC), and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) thin films epitaxially grown on YSZ single crystal substrates by the pulse laser deposition technique. We find in all cases that Sr is enriched or segregated to the surface of the film cathodes. We concluded that the Sr enrichments or segregations are mainly the results of annealing because they do not depend on whether the cathodes are electrochemically biased or not during annealing. However, at least in the case of LSCF, we find that B-site Co segregates rather uniformly to the surface and the segregation responds sensitively and reversibly to the electrochemical bias.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adler, S. B., Chem. Rev., 104, 4791 (2004).CrossRefGoogle Scholar
Petrov, A. N., Kononchuk, O. F., Andreev, A. V., Cherepanov, V. A., and Kofstad, P., Solid State Ionics, 80, 189 (1995).CrossRefGoogle Scholar
Ralph, J. M., Schoeler, A. C., and Krumpelt, M., J. Mater. Sci., 36, 1161 (2001).CrossRefGoogle Scholar
Tai, L.-W., Nasrallah, M.M., Anderson, H.U., Sparlin, D.M., and Sehlin, S.R., Solid State lonics 76, 261 (1995); ibid, 76, 273(1995).Google Scholar
Jiang, S.P., Solid State Ionics, 146, 1 (2002).CrossRefGoogle Scholar
Xia, C. and Liu, M., Adv Mater 14, 521 (2002).3.0.CO;2-C>CrossRefGoogle Scholar
Choi, Y., Mebane, D.S., Wang, J., Liu, M., Top Catal, 46, 386 (2007).CrossRefGoogle Scholar
Chen, X.,a) Wu, N. J., Smith, L., and Ignatiev, A., Appl. Phys. Lett., 84, 2700 (2004).CrossRefGoogle Scholar
Mutoro, E., Crumlin, E. J., Biegalski, M. D., Christen, H. M., Shao-Horn, Y., Energy Env. Sci., 4, 3689 (2011).CrossRefGoogle Scholar
Noh, H.-S., Son, J.-W., Lee, H., Park, J.-S., Lee, H.-W., and Lee, J.-H., fuel cells, 10, 1057 (2010).CrossRefGoogle Scholar
Plonczak, P., Sørensen, D. R., Søgaard, M., Esposito, V., Hendriksen, P. V., Solid State Ionics, 217, 54 (2012)CrossRefGoogle Scholar
Huber, A., Falk, M., Rohnke, M., Luerssen, B., Amati, M., Gregoratti, L., Hesse, D., Janek, J., J. Catal., 294, 79 (2012).CrossRefGoogle Scholar
Cai, Z., Kuru, Y., Han, J.W., Chen, Y., Yildiz, B., J. Am. Chem. Soc., 133, 17696 (2011).CrossRefGoogle Scholar
Jalili, H., Han, J. W., Kuru, Y., Cai, Z., Yildiz, B., J. Phys. Chem. Lett. 2, 801 (2011).CrossRefGoogle Scholar
Cai, Z., Kubicek, M., Fleig, J., Yildiz, B., Chem. Mater. 24, 1116 (2012)CrossRefGoogle Scholar
Yildiz, B., Myers, D.J., Carter, J.D., Chang, K.C., You, H., Adv. Solid oxide fuel cells III, Cer. Eng. & Sci. Proc., 28, 153 (2008).Google Scholar
Chang, K.C., Ingram, B., Kavaipatti, B., Yildiz, B., Hennessy, D., Salvador, P., Leyarovska, N., You, H., Solid State Ionics, Mat. Res. Soc. Symp. Proc., 1126, 27 (2009).Google Scholar
Jackson, D.J., Classical Electrodynamics, Wiley, New York, 1999.Google Scholar
Becker, R.S., Golovchenko, J.A., Patel, J. R., Phys. Rev. Lett., 50, 153 (1983).CrossRefGoogle Scholar
Bedzyk, M., Encyclopedia of Cond. Matt. Phys. 6, 330 (2005).CrossRefGoogle Scholar
Sayers, D.E., Stern, E.A., Lytle, F.W., Phys. Rev. Lett. 27 1204 (1971).CrossRefGoogle Scholar
Rehr, J., Albers, R., Rev. Mod. Phys. 72, 621 (2000).CrossRefGoogle Scholar
Chang, K.C. and You, H., unpublished.Google Scholar
Gopalan, S. and Ludwig, K., private communication.Google Scholar
Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., Tokura, Y., Phys. Rev. B 51, 14103 (1995).CrossRefGoogle Scholar
Tokura, Y., Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., Furukawa, N., J. Phys. Soc. Jpn., 63, 3931 (1994).CrossRefGoogle Scholar
Wu, J. and Leighton, C., Phys. Rev. B 67 174408 (2003).CrossRefGoogle Scholar
Mineshige, A., Kobune, M., Fujii, S., Ogumi, Z., Inaba, M., Yao, T., Kikuchi, K., J. Solid State Chem., 142, 374 (1999).CrossRefGoogle Scholar
Nielsen, J., Jacobsen, T., Solid State Ionics. 178, 1001 (2007).CrossRefGoogle Scholar