Skip to main content Accessibility help

In Situ TEM Investigation of Abnormal Grain Growth in Nanocrystalline Nickel

  • David M. Follstaedt (a1), Khalid Hattar (a2), James A. Knapp (a3) and Ian M. Robertson (a4)


In situ transmission electron microscopy was used to show that nanocrystalline nickel produced by pulsed-laser deposition undergoes abnormal grain growth at moderate temperatures (225-400°C). The growth rate was found to increase with thickness for the three film thicknesses examined, 50, 80 and 150 nm. The abnormal growth proceeded in an irregular manner: initiation sites and growth direction were unpredictable, and the grains exhibited no preferred orientation. Some abnormal grains show internal boundaries such as twins, while others exhibited lattice misalignments across the grain body. The grains contain many defects, including dislocations, stacking faults and surprisingly, stacking fault tetrahedra. The stacking fault tetrahedra are not a result of quenching nor of electron irradiation-induced lattice displacements; they instead are thought to form from vacancies trapped in the growing grain as it incorporates lower-density material at the high-angle grain boundaries in the nanocrystalline matrix.



Hide All
1 Becker, E. W., Ehrfeld, W., Hagmann, P., Maner, A., Munchmeyer, D., Microelectron. Engr. 4, 35 (1986).
2 Knapp, J. A. and Follstaedt, D. M., J. Mater. Res. 19, 218 (2004).
3 Hugo, R. C., Kung, H., Weertman, J. R., Mitra, R., Knapp, J. A. and Follstaedt, D. M., Acta Mater. 51, 1937 (2003).
4 Shan, Z., Stach, E. A., Wiezorek, J. M. K., Knapp, J. A., Follstaedt, D. M. and Mao, S. X., Science 305, 654 (2004).
5 Rios, P. R., Mater. Sci. Forum 204–206, 247 (1996).
6 Seel, S. C., Carel, R., Mater. Res. Soc. Symp. Proc. 403, 63 (1996).
7 Thompson, C. V. and Carel, R., Mater. Sci. forum 204–206, 83 (1996).
8 Watanabe, T., Scr. Metall. 21, 427 (1987).
9 Nabarro, F. R. N., Scr. Mat. 39, 1681 (1998).
10 Greiser, J., Mullner, P. and Arzt, E., Acta Mat. 49, 1041 (2001).
11 Klement, U., Erb, U., El-Sherik, A.M. and Aust, K. T., Mater. Sci. Eng. A 203, 177 (1995).
12 Gottstein, G., Czubayko, U., Molodov, D. A., Shvindlerman, L. S. and Wunderlich, W., Mater. Sci. Forum 204–206, 99 (1996).
13 Twardowski, M. and Nuzzo, R.G., Langmuir 18, 5529 (2002).
14 Hibbard, G. D., McCrea, J. L., Palumbo, G., Aust, K. T. and Erb, U., Scr. Mat. 47, 83 (2002).
15 This website will be maintained for 2 years following the publication of this manuscript.
16 Williams, D. B. and Carter, C. B., Transmission Electron Microscopy : A Textbook for Materials Science (Plenum Press, New York, 1996). See p. 62 (beam heating), p. 62 (atomic displacements).
17 Hirth, J. P. and Lothe, J., Theory of Dislocations (Krieger Publishing Co., Malabar, FL, 1992), p. 332 (stacking fault tetrahedral), and p. 839 (stacking fault energies).
18 Sigle, W., Jenkins, M. L. and Hutchison, J. L., Phil. Mag. Lett. 57, 267 (1988).
19 Kiritani, M., Mater. Chem. Phys. 50, 1333 (1997).
20 Schumacher, D., Zeit. Angewand. Phyz. 26, 380 (1969).
21 Seeger, A. and Schumacher, D., in Lattice Defects in Quenched Metals, eds. Cotterill, R. M. J, Doyama, M., Jackson, J. J. and Meshii, M. (Academic Press, New York, 1965), p. 54.
22 Van Petegem, S., Torre, F. Dalla, Segers, D. and Van Swygenhoven, H., Scr. Mat. 48, 17 (2003).
23 Sutton, A. P. and Balluffi, R. W., Interfaces in Crystalline Materials (Oxford Univ. Press, Oxford, 1996).
24 Gregg, J. A., Hattar, K., Lei, C. H. and Robertson, I. M., proceedings of the Materials Research Society, Fall 2005, elsewhere in this volume.
25 Dannenberg, R., Stach, E. A., Groza, J. R. and Dresser, B. J., Thin Solid Films 370, 54 (2000).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed