Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T08:47:53.062Z Has data issue: false hasContentIssue false

In situ SEM Observations of the Tensile-Creep Deformation Behavior and Fracture Mechanisms of a γ-TiAl Intermetallic Alloy at Low and High Stresses.

Published online by Cambridge University Press:  11 December 2012

R. Muñoz-Moreno
Affiliation:
IMDEA Materials Institute, C/ Eric Kandel 2, 28906, Getafe, Madrid, Spain. Department of Materials Science and Engineering, Universidad Carlos III de Madrid, Avda. Universidad 39, 28911, Leganés, Spain.
M. T. Pérez-Prado
Affiliation:
IMDEA Materials Institute, C/ Eric Kandel 2, 28906, Getafe, Madrid, Spain.
E.M. Ruiz-Navas
Affiliation:
Department of Materials Science and Engineering, Universidad Carlos III de Madrid, Avda. Universidad 39, 28911, Leganés, Spain.
C. J. Boehlert
Affiliation:
IMDEA Materials Institute, C/ Eric Kandel 2, 28906, Getafe, Madrid, Spain. Department of Chemical Engineering and Materials Science, Michigan State University, 2527, Engineering Building, East Lansing, MI 48824, U.S.A. Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040, Madrid, Spain.
J. Llorca
Affiliation:
IMDEA Materials Institute, C/ Eric Kandel 2, 28906, Getafe, Madrid, Spain. Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040, Madrid, Spain.
Get access

Abstract

The effect of stress on the deformation and crack nucleation and propagation mechanisms of a γ-TiAl intermetallic alloy (Ti-45Al-2Nb-2Mn (at.%) - 0.8v.%TiB2) was studied by means of in situ tensile (constant strain rate) and tensile-creep (constant load) experiments performed at 973 K inside a scanning electron microscope (SEM). The evolution of the microstructure and the nucleation and propagation of cracks was tracked during the high temperature mechanical tests in the SEM. Colony boundary crack nucleation was found to be activated during the secondary stage in creep tests at 300 MPa and 400 MPa and during the tertiary stage of the creep tests performed at higher stresses and at constant strain rate. Interlamellar ledges were only observed during the high stress tensile-creep tests (σ>400 MPa) and during the constant strain rate test. Quantitative measurements of the nature of the crack propagation path along secondary cracks and along the primary crack were carried out. It was found that colony boundaries were preferential sites for crack propagation under all the conditions investigated. The frequency of interlamellar cracking increased with increasing stress.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dimiduk, D.M., Materials Science and Engineering A 263, 281288 (1999).10.1016/S0921-5093(98)01158-7CrossRefGoogle Scholar
Lütjering, G., Williams, J.C. in Titanium, Enigineering Materials and Processes edited by Derby, B. (Springer-Verlag Berlin Heidelberg, Germany, 2007) pp. 337366.Google Scholar
Appel, F., Paul, J. D., Oehring, M. in γ-Titanium Aluminides, edited by -VCH & Co, Wiley(Weinheim, Germany, 2011).CrossRefGoogle Scholar
Beddoes, J., Zhao, L., Au, P., Dudzinski, D., Triantafillou, J., Structural Intermetallics, Warrendale, PA, The Minerals Metals and Materials Society (1997) pp. 109118.Google Scholar
Parthasarathy, T.A., Keller, M., Mendiratta, M.G., Scr. Metall. 38(7), 10251031 (1998).CrossRefGoogle Scholar
Parthasarathy, T.A., Mendiratta, M.G., Dimiduk, D.M., Scr. Metall. 37(3), 315321 (1997).CrossRefGoogle Scholar
Boehlert, C.J., Dimiduk, D.M., Hemker, K.J., Scripta Materialia 46(4), 259267 (2002).CrossRefGoogle Scholar
Zhu, H., Seo, D.Y., Mayurama, K., Au, P., Scripta Materalia 54, 19791984 (2006).10.1016/j.scriptamat.2006.03.023CrossRefGoogle Scholar
Zhu, H., Seo, D.Y., Mayurama, K., Au, P.., Mat. Sc. Eng. A 483484, 533536 (2008).CrossRefGoogle Scholar
Muñoz Moreno, R., Boehlert, C.J., Ruiz Navas, E.M., Pérez Prado, M.T., Llorca, J., Met. Mat. Trans. A 43A, 11981208 (2012).CrossRefGoogle Scholar
Morris, M. A., Lipe, T., Intermetallics 5, 329337 (1997).CrossRefGoogle Scholar
Liwen, S., Ying, L., Yue, M.A., Shengkai, G., Rare metals, 30, 323325 (2011).Google Scholar
Appel, F., Wagner, R., Mat. Sci. Eng. R 22, 187268 (1998).10.1016/S0927-796X(97)00018-1CrossRefGoogle Scholar
Parthasarathy, T. A., Subramanian, P. R., Mendiratta, M. G. and Dimiduk, D. M., Acta mater. 48, 541551 (2000).10.1016/S1359-6454(99)00347-XCrossRefGoogle Scholar
Kassner, M.E., Pérez-Prado, M.T. in Fundamentals of creep in metals and alloys edited by Elsevier (Oxford, 2004).Google Scholar
Boehlert, C.J., Longanbach, S.C., Bieler, T.R., Phil. Mag. 88(5), 641664 (2008).CrossRefGoogle Scholar
Boehlert, C.J., Cowen, C.J., Tamirisakandala, S., McEldowney, D.J., Miracle, D.B., Scr. Mater. 55, 465468 (2006).10.1016/j.scriptamat.2006.05.008CrossRefGoogle Scholar
Cowen, C.J., Boehlert, C.J., Metall. Mater. Trans. A 38A, 2634 (2007).10.1007/s11661-006-9004-6CrossRefGoogle Scholar
Chen, W., Boehlert, C. J., International Journal of Fatigue 32(5), 799807 (2010).CrossRefGoogle Scholar
Larsen, D.E., Kampe, S., Christodoulou, L., Mater. Res. Soc. Symp. Proc. 194, 194285 (1990).Google Scholar
Zhang, W.J., Deevi, S.C., Intermetallics 10, 603611 (2002).CrossRefGoogle Scholar
Zhang, W.J., Deevi, S.C., Intermetallics 11, 177185 (2003).CrossRefGoogle Scholar
Beddoes, J., Wallace, W., Zhao, L., Int. Mater. Reviews 40(5), 197217 (1995).CrossRefGoogle Scholar
Hsiung, L. M., Nieh, T.G., Intermetallics 7, 821827 (1999).CrossRefGoogle Scholar