Hostname: page-component-788cddb947-xdx58 Total loading time: 0 Render date: 2024-10-14T03:36:24.340Z Has data issue: false hasContentIssue false

In Situ Photoconductive Study of C60 and Phthalocyanine Thin Films

Published online by Cambridge University Press:  25 February 2011

Nobutsugu Minami*
Affiliation:
Research Institute for Polymers and Textiles, AIST 1–1–4 Higashl, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

The in situ measurement of lateral photoconductivity has been carried out on vacuum vapor deposited C60 and phthalocyanine thin films. From the photo-current increase curve during the deposition and the SEM observation of copper phthalocyanine (CuPc) thin films, it has been revealed that, at an early stage of deposition, they consist of small clusters scattered on substrate. As the thickness Increases, the clusters coalesce to eventually form continuous film. We also show that C60 thin film has considerable photoconductivity. The photo-current spectrum agrees well with the absorption one with the exception that a peak at 600 nm appears only in the former. This wavelength region corresponds to a theoretically predicted forbidden transition. An onset of photocurrent at 760 nm is assigned to the absorption edge of solid C60. The photoconductivity of C60 thin films shows a rather unusual temperature dependence In that a small drop of temperature (e.g. from 25° C to 15° C) causes a dramatic increase In photocurrent by more than two orders of magnitude.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Minami, N. and Asai, M., Jpn. J. Appl. Phys. 30, L643 (1991).Google Scholar
2. Kretschmer, W., Lamb, L. D., Fostlropoulos, K., and Huffman, D. R., Nature 347, 354 (1990).Google Scholar
3. Haddon, R. C., Hebard, A. F., Rosseinsky, M. J., Murphy, D. W., Duelos, S. J., Lyons, K. B., Mlleer, B., Rosamilla, J. M., Fleming, R. M., Kortan, A. R., Glarum, S. H., Makhija, A. V., Muller, A. J.. Elek, R. H.. Zahurak, S. M.. Tycko, R.. Dabbagh, G.. and Thiel, F. A., Nature 350, 320 (1991).Google Scholar
4. Hebard, A. F.. Rosseinsky, M. J., Haddon, R. C., Murphy, D. W., Glarum, S. H., Palstra, T. T. M., Ramirez, A. P., and Kortan, A. R., Nature 350, 600 (1991).Google Scholar
5. Minami, N., Chem. Lett. 1991, 1791.Google Scholar
6. Hitachi Technical Data No. 35.Google Scholar
7. Miller, B., Rosamilia, J. M., Dabbagh, G.. Tycko, R., Haddon, R. C.. Muller, A. J., Wilson, W., Murphy, D. W., and Hebard, A. F., J. Am. Chem. Soc. 113, 6291 (1991).Google Scholar
8. Skumanlch, A., Chem. Phys. Lett. 182, 486 (1991).Google Scholar
9. Saito, S. and Oshiyama, A., Phys. Rev. Lett. 66, 2637 (1991).Google Scholar
10. Bube, R. H., Photoconductivity of Solids, (Robert E. Krieger Publishing Co., New York, 1978), p. 344.Google Scholar
11. Heiney, P. A.. Fischer, J. E., McGhie, A. R., Romanow, W. J.. Denenstein, A. M., McCauley, J. P. Jr, Smith, A. B. III, and Cox, D. E., Phys. Rev. Lett. 66, 2911 (1991).Google Scholar