Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-26T23:57:47.715Z Has data issue: false hasContentIssue false

In Situ Measurements of Hydrogen Flux, Surface Coverage, Incorporation and Desorption During Magnetron Sputter-Deposition of A-SI:H.

Published online by Cambridge University Press:  21 February 2011

J. R. Abelson
Affiliation:
Coordinated Science Laboratory and the Materials Science Department, University of Illinois, Urbana IL 61801
N. Maley
Affiliation:
Coordinated Science Laboratory and the Materials Science Department, University of Illinois, Urbana IL 61801
J. R. Doyle
Affiliation:
Coordinated Science Laboratory and the Materials Science Department, University of Illinois, Urbana IL 61801
G. F. Feng
Affiliation:
Coordinated Science Laboratory and the Materials Science Department, University of Illinois, Urbana IL 61801
M. Fitzner
Affiliation:
Coordinated Science Laboratory and the Materials Science Department, University of Illinois, Urbana IL 61801
M. Katiyar
Affiliation:
Coordinated Science Laboratory and the Materials Science Department, University of Illinois, Urbana IL 61801
L. Mandrell
Affiliation:
Coordinated Science Laboratory and the Materials Science Department, University of Illinois, Urbana IL 61801
A. M. Myers
Affiliation:
Coordinated Science Laboratory and the Materials Science Department, University of Illinois, Urbana IL 61801
A. Nuruddin
Affiliation:
Coordinated Science Laboratory and the Materials Science Department, University of Illinois, Urbana IL 61801
D. N. Ruzic
Affiliation:
Coordinated Science Laboratory and the Materials Science Department, University of Illinois, Urbana IL 61801
S. Yang
Affiliation:
Coordinated Science Laboratory and the Materials Science Department, University of Illinois, Urbana IL 61801
Get access

Abstract

High quality a-Si:H films are deposited by d.c. magnetron reactive sputtering of a Si target in an (Ar + H2) plasma. This paper reports the first comprehensive understanding of the growth process. The incident flux, surface H coverage, H2 release, and bulk H incorporation are determined using four in situ, real time techniques: double modulation mass spectroscopy, isotope replacement experiments, reflection absorption infra-red spectroscopy, and spectroscopic ellipsometry. In addition, the sputtered particle transport is simulated using Monte-Carlo techniques. For conditions which produce electronic quality a-Si:H, the total H flux arriving at the surface varies between 0.5 – 2 times the depositing Si flux; approximately half of this flux appears to reflect from the surface without interaction. The growth surface has excess H varying between 0.5 – 2 × 1015/cm2, and this surface H coverage is uniquely related to the bulk H incorporation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pinarbasi, M., Maley, N., Myers, A., and Abelson, J. R., Thin Solid Films 171, 217 (1989).Google Scholar
2. Pinarbasi, M., Kushner, M. J., and Abelson, J. R., J. Appl. Phys. 68 (5), 2255 (1990).Google Scholar
3. Moustakas, T., in Semiconductors and Semimetals Vol. 21A. edited by Pankove, J. (Academic Press, New York, 1984) pp. 5582.Google Scholar
4. Thompson, M. J., in The Phvsics of Hydrogenated Amorphous Silicon I. edited by Joannopoulos, J. D. and Lucovsky, G. (Springer-Verlag, New York, 1984), pp. 119176.Google Scholar
5. Lin, G. H., Doyle, J. R., He, M., and Gallagher, A., J. Appl. Phys. 64 (1), 188 (1988).Google Scholar
6. Veprek, S., Sarott, F.-A., Rambert, S., and Taglauer, E., JVST A2 (4), 2614 (1989).Google Scholar
7. Pinarbasi, M., Chou, L. H., Maley, N., Myers, A., Leet, D., and Thornton, J. A., Superlattices and Microstructures 3 (4), 331 (1987).Google Scholar
8. Myers, A. M., Ruzic, D. N., Powell, R., Maley, N., Pratt, D., Greene, J. E., and Abelson, J. R., J. Vac. Sci. Tech. A8 (3), 1668 (1990).Google Scholar
9. Myers, A. M., Ruzic, D. N., Maley, N., Doyle, J., and Abelson, J. R. in Amorphous Silicon Technology - 1990. ed. Madan, A. et al. (MRS Proc. 192, Pittsburg PA 1990), p. 595.Google Scholar
10. Myers, A. M., PhD diesis, U. Illinois at Urbana-Champaign, 1991.Google Scholar
11. Myers, A., Doyle, J. R., Abelson, J. R. and Ruzic, D. N., J. Vac. Sci. Tech. (May 1991).Google Scholar
12. Doyle, J. R., in preparation.Google Scholar
13. Abelson, J. R., Doyle, J., Mandrell, L., Myers, A. M., and Maley, N., J. Vac. Sci. Tech. A8(3), 1364 (May/June 1990).Google Scholar
14. Feng, G., Katiyar, M., Abelson, J. R., and Maley, N., in these proceedings.Google Scholar
15. Maley, N., Szafranek, I., Mandrell, L., Abelson, J. R. and Thornton, J. A., J. Non-Crystalline Solids 114, 163 (1989).CrossRefGoogle Scholar
16. Katiyar, M., Feng, G., Abelson, J. R., and Maley, N., in diese proceedings.Google Scholar
17. Maley, N., Myers, A., Pinarbasi, M., Leet, D., Abelson, J. R., and Thornton, J. A., J. Vac. Sci. Tech. 7, (1989).Google Scholar
18 Langford, A. et al., in preparation.Google Scholar