Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T20:13:36.468Z Has data issue: false hasContentIssue false

In Situ Initial Growth Studies of SrTiO3 on SrTiO3 by Time Resolved High Pressure RHEED

Published online by Cambridge University Press:  15 February 2011

Gertjan Koster
Affiliation:
Department of Applied Physics, Low Temperature Division, University of Twente, PO box 217, 7500 AE, Enschede, The Netherlands, d.h.a.blank@tn.utwente.nl
Guus J.H.M. Rijnders
Affiliation:
Department of Applied Physics, Low Temperature Division, University of Twente, PO box 217, 7500 AE, Enschede, The Netherlands, d.h.a.blank@tn.utwente.nl
Dave H.A. Blank
Affiliation:
Department of Applied Physics, Low Temperature Division, University of Twente, PO box 217, 7500 AE, Enschede, The Netherlands, d.h.a.blank@tn.utwente.nl
Horst Rogalla
Affiliation:
Department of Applied Physics, Low Temperature Division, University of Twente, PO box 217, 7500 AE, Enschede, The Netherlands, d.h.a.blank@tn.utwente.nl
Get access

Abstract

The initial growth of pulsed laser deposited SrTiO3 on SrTiO3 has been studied using high pressure Reflection High Energy Electron Diffraction (RHEED) and Atomic Force Microscopy (AFM). For this, we developed a Pulsed Laser Deposition (PLD)-RHEED system, with the possibility to study the growth and to monitor the growth rates, in situ, at typical PLD pressures (10-50 Pa). Using perfect single crystal SrTiO3 substrate surfaces, we observe true 2D intensity oscillations at different temperatures. Simultaneously, information on the diffusion of the deposited material on the surface could be extracted from the relaxation of the intensity after each laser pulse. The characteristic times depend on pressure and temperature as well as the 2D coverage during growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bozovic, I. and Eckstein, J.N., MRS Bulletin 20, 32 (1995).Google Scholar
2. Karl, H. and Stritzker, B., Phys. Rev. Lett. 69 2939 (1992).Google Scholar
3. Yoshimoto, M., Ohkubo, H., Kanda, N., Koinuma, H., Horiguchi, K., Kumagai, M. and Hirai, K., Appl. Phys. Lett. 61, 2659 (1992).Google Scholar
4. Liu, Z., Hanada, T., Sekine, R., Kawai, M. and Koinuma, H., Appl. Phys. Lett. 65, 1717 (1994).Google Scholar
5. Kanai, M., Kawai, T. and Kawai, S., Appl. Phys. Lett. 58, 771 (1991).Google Scholar
6. Terashima, T., Bando, Y., Iijima, K., Yamamoto, K., Hirata, K., Hayashi, K., Kamigaki, K. and Terauchi, H., Phys. Rev. Lett. 65 2684 (1990).Google Scholar
7. Shaw, T.M., Gupta, A., Chem, M.Y., Batson, P.E., Laibowitz, R.B. and Scott, B.A., J. Mater. Res. 9 2566 (1994).Google Scholar
8. Tarsa, E.J., Hachfeld, E.A., Quinlan, F.T., Speck, J.S. and Eddy, M., Appl. Phys. Lett. 68 490 (1996).Google Scholar
9. Rijnders, A.J.H.M., Koster, G., Blank, D.H.A. and Rogalla, H., Appl.Phys. Lett. 70,1888 (1997)Google Scholar
Achutharaman, V.S., Chandrasekhar, N, Valls, O.T. and Goldman, A.M., Phys. Rev. B 50 8122 (1994).Google Scholar
10. Lagally, M.G., Savage, D.E. and Tringides, M.C., NATO series B: Physics Vol. 188, 139 (1987).Google Scholar
11. Koster, G., Heutink, J., Kropman, B.L., Rijnders, A.J.H.M., Blank, D.H.A. and Rogalla, H., EUCAS '97 Proceedings, Inst. Phys. Conf. Ser. No 158, 181 (1997).Google Scholar
12. Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M. and Koinuma, H., Science 266 1540 (1994).Google Scholar
13. Koster, G., Kropman, B.L., Rijnders, A.J.H.M., Blank, D.H.A. and Rogalla, H., Submitted to Applied Physics Letters.Google Scholar
14. Sum, R., Lang, H.P. and Gintherodt, H.-J., Physica C 242, 174 (1995).Google Scholar
15. Dam, B. and Stäuble-Pümpin, B., submitted to the journal of Materials Science.Google Scholar