Skip to main content Accessibility help
×
Home

In situ HREM Study on the Thermal Stability of Atomic Layer Epitaxy Grown InAs/GaAs Quantum Dots

  • H. S. Kim (a1), J. H. Suh (a1), C. G. Park (a1), S. J. Lee (a2), S. K. Noh (a2), J. D. Song (a3), Y. J. Park (a3), W. J. Choi (a3) and J. I. Lee (a3)...

Abstract

Self-assembled InAs/GaAs quantum dots (QDs) were grown by the atomic layer epitaxy technique and the structure and the thermal stability of QDs have been studied by using high resolution electron microscopy with in-situ heating experiment capability. The QDs were found to form a hemispherical structure with {136} side facet in the early stage of growth. The average height and diameter of the QD were found to be ∼ 5.5 nm and ∼ 23 nm, respectively. Upon capping by GaAs layer, however, the apex structure of QD changed to a flat one. In-situ heating experiment within TEM revealed that the uncapped QD remained stable until 580°C. However, at temperature above 600°C, the QD structure became flat due to the fast decrease of QD height. After flattening, the atoms diffused from the InAs QD to the GaAs substrate, resulting in the total collapse. The density of the QD decreased abruptly by this collapse and most QDs disappeared at above 600°C.

Copyright

References

Hide All
1. Chin, A., Liao, C. C., Chu, J. and Li, S. S., J. of Crystal Growth 175/176, 999 (1997)
2. Kato, T., Takeuchi, T., Inoue, Y., Hasegawa, S., Inoue, K. and Nakashima, H., Appl. Phys. Lett. 72(4), 465 (1998)
3. Priester, C. and Lanno, M., Phys. Rev. Lett. 75(1), 93 (1995)
4. Leonard, D., Krishnamurthy, M., Reaves, C. M., Denbaars, S. P., and Petroff, P. M., Appl. Phys. Lett. 63, 3203, (1993)
5. Garcia, J. M., Medeiros-Rebeiro, G., Schmidt, K., Ngo, T., Feng, J. F., Lorke, A., Kotthaus, J., and Petroff, P. M., Appl. Phys. Lett. 71, 2014, (1997)
6. Kaiander, I. N., Sellin, R. L., Kettler, T., Ledentsov, N. N., Bimberg, D., Zakharov, N. D., and Werner, P., Appl. Phys. Lett. 84, 2992 (2004)
7. Yano, K., Ishii, T., Hashimoto, T., Kobayashi, T., Murai, F., and Seki, K., IEEE Trans. Electron Devices 41, 1628 (1994)
8. Phillips, J., Kamath, K., and Bhattacharya, P., Appl. Phys. Lett. 72, 2020 (1998)
9. Grundmann, M., Stier, O. and Bimberg, D., Phys. Rev. B 52, 11969 (1995)
10. Ledentsov, N.N., Shchukin, V.A., Grundmann, M., Kirstaedter, N., Böhrer, J., Schmidt, O., Bimberg, D., Ustinov, V.M., Egorov, A.Y., Zhukov, A.E., Kop'ev, P.S., Zaitsev, S.V., Gordeev, N.Y., Alferov, Z.I., Borovkov, A.I., Kosogov, A.O., Ruvimov, S.S., Werner, P., Gösele, U., Heydenreich, J., Phys. Rev. B. 54, 8743 (1996)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed