Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-16T19:31:29.261Z Has data issue: false hasContentIssue false

In situ growth of organically-modified magnesium silicate clays within poly(ethylene oxide) matrices to prepare hybrid nanocomposites

Published online by Cambridge University Press:  01 February 2011

Bénédicte Lebeau
Affiliation:
Laboratoire de Matériaux Minéraux, CNRS UMR 7016 - ENSCMu - UHA, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
Nicola T. Whilton
Affiliation:
School of Chemistry, University of Bristol, Bristol BS1 8TS, UK
Stephen Mann
Affiliation:
School of Chemistry, University of Bristol, Bristol BS1 8TS, UK
Get access

Abstract

A direct synthetic method has been developed to produce hybrid materials composed of polymeric matrices infiltrated with layered inorganic particles. Magnesium chloride hexahydrate and (3-aminopropyl)triethoxysilane (ATES) were employed to produce lamellar organicallymodified magnesium silicate clays with structures analogous to the inorganic 2:1 phyllosilicates. Amino-functionalised Mg-phyllosilicates were prepared inside a poly(ethylene oxide) (PEO) matrix under quasi non-aqueous conditions. Nanostructured PEO-organoclay composites in bulk and films have been prepared with different layered inorganic particle loadings. X-ray diffraction patterns recorded showed for all samples reflections characteristic of crystalline PEO and layered magnesium organosilicate. Increasing the inorganic content of the composites resulted in the disappearance of the X-ray reflections characteristic of crystalline PEO.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] (a) Sanchez, C., Ribot, F., New J. Chem. 18, 1007 (1994) and references therein. (b) U. Schubert, N. Hüsing, A. Lorenz, Chem. Mater. 7, 2010 (1995). (c) D. A. Loy, K. J. Shea, Chem. Rev. 95, 1431 (1995). (d) P. Judenstein, C. Sanchez, J. Mater. Chem. 6, 511 (1996). (e) R. J. P. Corriu, C.R. Acad. Sci. 1, 83 (1998). (f) C. Sanchez and B. Lebeau, Mater. Res. Soc. Bull. 26, 377 (2001) (g) C. Sanchez, G. J. de A. A. Soler-Illia, F. Ribot, T. Lalot, C. R. Mayer, V. Cabuil, Chem. Mater. 13, 3061 (2001).Google Scholar
[2] (a) Giannelis, E. P., JOM 44, 28 (1992). (b) E. P. Giannelis, Adv. Mater. 8, 29 (1996). (c) E. P. Giannelis, Appl. Organometal. Chem. 12, 675 (1998). (d) P. C. LeBaron, Z. Wang and T. J. Pinnavaia, Appl. Clay Sci. 15, 11 (1999). (e) M. Alexandre and P. Dubois, Mater. Sci. Eng. 28, 1 (2000).Google Scholar
[3] Calvert, P. and Mann, S., J. Mater. Sci. 23, 3801 (1988).Google Scholar
[4] Whilton, N. T., Burkett, S. L. and Mann, S., J. Mater. Chem. 8, 1927 (1998).Google Scholar
[5] Wu, J. and Lerner, M. M., Chem. Mater. 5, 835 (1993).Google Scholar
[6] Fukushima, Y. and Tani, M., J. Chem. Soc, Chem. Commun. 241 (1995).Google Scholar
[7] Burkett, S. L., Press, A. and Mann, S., Chem. Mater. 9, 1071 (1997).Google Scholar
[8] Gravel, M.C., Zhang, C., Dinderman, M., and Laine, R.M., Appl. Organomet. Chem. 13, 329 (1999).Google Scholar