Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-20T13:12:16.081Z Has data issue: false hasContentIssue false

In Situ Growth of High Quality Epitaxial Yba2cu3O7X Thin Films at Moderate Temperatures by Pulsed Laser Ablation

Published online by Cambridge University Press:  28 February 2011

Douglas H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
David P. Norton
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
J. W. Mccamy
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
R. Feenstra
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
J. D. Budai
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
D. K. Christen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
D. B. Poker
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
Get access

Abstract

Pulsed KrF (248 nm) laser ablation has been used for in situ growth of smooth, high‐quality YBa2Cu3O7‐x epitaxial films of variable thickness on SrTiO3, KTaO3, LaGaO3, LaA1O3, cubic ZrO2, and MgO substrates, at temperatures of ∼60O‐730°C, without higher temperature post‐annealing. A rotating target pellet, fine focusing by a single cylindrical lens, laser‐beam scanning over the target, and laser energy densities ∼2.5‐3 J/cm2 can be combined to yield films of completely uniform composition and with ∼25% thickness variation over areas ∼8 cm2. The best films have Tc > 92 K and JC(H = 0, T = 77 K) > 2 MA/cm2. Film‐growth procedures are described, together with results of superconducting and normal‐state transport measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Feenstra, R., Budai, J. D., Christen, D. K., Chisholm, M. F., Boatner, L. A., Galloway, M. D., and Poker, D. B., in Science and Technology of Thin Film Superconductors (ed. McConnell, R. D. and Wolf, S. A., Plenum Pub. Corp., 1989), p. 327.Google Scholar
2 Terashima, T., Iijima, K., Yamamoto, K., Hirata, K., Bando, Y., and Takada, T., Jap. J. Appl. Physics 28, L987 (1989).Google Scholar
3 Xi, X. X., Linker, G., Meyer, O., Nold, E., Obst, B., Ratzel, F., Smithey, R., Strehlau, B., Weschenfelder, F., and Geerck, J., Z. Phys. B ‐ Conden, Matter 14,13 (1989).Google Scholar
4 Venkatesan, T., Wu, X. D., Inam, A., Hegde, M. S., Chase, E. W., Chang, C. C., England, P., Hwang, D. M., Krchnavek, R., Wachtman, J. B., McLean, W. L., Levi‐Setti, R., Chabala, J., and Wang, Y. L., in Chemistry of High Temperature Superconductors II (Amer. Chem. Soc., 1988), p. 234.Google Scholar
5 Venkatesan, T., Wu, X. D., Inam, A., and Wachtman, J. B., Appl. Phys. Lett. 52, 1193 (1988).Google Scholar
6 Eryu, O., Murakami, K., Masuda, K., Kasuya, A., and Nishina, Y., Appl. Phys. Lett. 54, 2716 (1989).Google Scholar
7 Feenstra, R. et al. , these Proceedings and to be published.Google Scholar
8 McCamy, J. W. et al. , these Proceedings and to be published.Google Scholar
9 Christen, D. K. et al. , these Proceedings and to be published.Google Scholar
10 Tachiki, M. and Takahashi, S., Solid State Comm. 70, 291 (1989).Google Scholar
11 Kwasnick, R. F., Luborsky, F. E., Hall, E. L., Garbauskas, M. F., Borst, K., and Curran, M. J., J. Mater. Res. 4, 257 (1989).Google Scholar
12 Geohegan, D. B. and Mashburn, D. N., these Proceedings and to be published.Google Scholar