Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-25T23:02:41.321Z Has data issue: false hasContentIssue false

In Situ Flux Transient Monitoring and Correction During MBE Growth of Quantum Well Structures

Published online by Cambridge University Press:  22 February 2011

F. G. Celii
Affiliation:
Central Research Laboratories, Texas Instruments, Inc., Dallas, TX 75265
Y.-C. Kao
Affiliation:
Central Research Laboratories, Texas Instruments, Inc., Dallas, TX 75265
A. J. Katz
Affiliation:
Central Research Laboratories, Texas Instruments, Inc., Dallas, TX 75265
Get access

Abstract

Shutter closure during MBE deposition causes source overheating and results in flux transients. These transients are particularly detrimental to the thickness and compositional accuracy of thin quantum well layers. In this paper, we document the effects of flux transients on growth of multiple quantum well (MQW) and resonant tunneling diode (RTD) structures, and demonstrate rudimentary transient correction by employing real-time flux detection.

Reflection mass spectrometry (REMS) provides a convenient in situ method for MBE flux monitoring. The Group III partial pressures can be detected in the presence of Group V overpressure, and REMS is compatible with wafer rotation. We used REMS to characterize In, Al and Ga flux transients as a function of shutter closed time, cell flux and substrate temperature. Overshoot magnitudes up to 30% were observed. We verified the correspondence of REMS signal transients and effusion cell flux transients using GaAs/AlGaAs and InGaAs/lnAlAs MQW and test structures. We also successfully demonstrated flux transient correction by cell temperature ramping during MQW and RTD growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seabaugh, A. C., Kao, Y.-C. and Yuan, H.-T., IEEE Electron. Dev. Lett., 13,479 (1992).Google Scholar
2. Lyon, T. J. de, Casey, H. C. Jr., Enquist, P. M., Hutchby, J. A. and SpringThorpe, A. J., J. Appl. Phys. 65, 3282 (1989).Google Scholar
3. Chalmers, S. A. and Killeen, K. P., Appl. Phys. Lett. 62, 1182 (1993).Google Scholar
4. Celii, F. G., Kao, Y.-C., Beam, E. A. III, Duncan, W. M. and Moise, T. S., J. Vac. Sci. Technol. B 11 (1993) in press.Google Scholar
5. SpringThorpe, A. J. and Mandeville, P., J. Vac. Sci. Technol. B6, 754 (1988).Google Scholar
6. SpringThorpe, A. J., Majeed, A. and Priest, A. D., Appl. Phys. Lett. 59, 1981 (1991).Google Scholar
7. Tsao, J. Y., Brennan, T. M., Klein, J. F. and Hammons, B. E., Appl. Phys. Lett. 55,777 (1989).Google Scholar
8. Evans, K. R., Stutz, C. E., Taylor, E. N. and Ehret, J. E., J. Vac. Sci. Technol. B9, 2427 (1991).Google Scholar
9. Brennan, T. M., Tsao, J. Y. and Hammons, B. E., J. Vac. Sci. Technol. A10, 33 (1992).Google Scholar
10. Zhang, J., Gibson, E. M., Foxon, C. T. and Joyce, B. A., J. Cryst. Growth 111, 93 (1991).Google Scholar
11. Evans, K. R., Stutz, C. E., Yu, P. W. and Wie, C. R., J. Vac. Sci. Technol. B8, 271 (1990).Google Scholar
12. Kao, Y. C., Celii, F. G. and Liu, H.-Y., J. Vac. Sci. Technol. B 11 (1993) in press.Google Scholar
13. Chilton, P. A., Truscott, W. S. and Wen, Y. F., J. Vac. Sci. Technol. B6, 1099 (1988).Google Scholar
14. Vlcek, J. C. and Fonstad, C. G., J. Cryst. Growth 111, 56 (1991).Google Scholar
15. Kao, Y. C., Celii, F. G., Seabaugh, A. C. and Luscombe, J. L., unpublished.Google Scholar